Thu, 09 May 2019
16:00
C4

Orientability of moduli spaces of coherent sheaves on Calabi–Yau 4-folds

Jacob Gross
(Oxford University)
Abstract

Gauge-theoretic invariants such as Donaldson or Seiberg–Witten invariants of 4-manifolds, Casson invariants of 3-manifolds, Donaldson–Thomas invariants of Calabi–Yau 3- and 4-folds, and putative Donaldson–Segal invariants of G_2 manifolds are defined by constructing a moduli space of solutions to an elliptic PDE as a (derived) manifold and integrating the (virtual) fundamental class against cohomology classes. For a moduli space to have a (virtual) fundamental class it must be compact, oriented, and (quasi-)smooth. We first describe a general framework for addressing orientability of gauge-theoretic moduli spaces due to Joyce–Tanaka–Upmeier. We then show that the moduli stack of perfect complexes of coherent sheaves on a Calabi–Yau 4-fold X is a homotopy-theoretic group completion of the topological realisation of the moduli stack of algebraic vector bundles on X. This allows one to extend orientations on the locus of algebraic vector bundles to the boundary of the (compact) moduli space of coherent sheaves using the universal property of homotopy-theoretic group completions. This is a necessary step in constructing Donaldson–Thomas invariants of Calabi–Yau 4-folds. This is joint work with Yalong Cao and Dominic Joyce.

Tue, 05 Mar 2019

12:45 - 13:30
C3

Modelling Magnetically Targeted Stem Cell Delivery

Edwina Yeo
(Oxford University)
Abstract

The development of an effective method of targeting delivery of stem cells to the site of an injury is a key challenge in regenerative medicine. However, production of stem cells is costly and current delivery methods rely on large doses in order to be effective. Improved targeting through use of an external magnetic field to direct delivery of magnetically-tagged stem cells to the injury site would allow for smaller doses to be used.
We present a model for delivery of stem cells implanted with a fixed number of magnetic nanoparticles under the action of an external magnetic field. We examine the effect of magnet geometry and strength on therapy efficacy. The accuracy of the mathematical model is then verified against experimental data provided by our collaborators at the University of Birmingham.

Wed, 06 Mar 2019
16:00
C1

A quick intro to right angled buildings

Ido Grayevsky
(Oxford University)
Abstract


Buildings are geometric objects, originally introduced by Tits to study Lie groups that act on their corresponding building. Apart from their significance for Lie groups, buidings and their automorphism groups are a rich source of examples for groups with interesting properties (for example, it is a result of Caprace that some buildings admit an automorphism group which is compactly generated, abstractly simple and locally compact). Right Angled Buildings (RABs) are a specific kind of building whose geometry can be well understood as it resembles the geometry of a tree. This allows one to generalise ideas like the Burger-Mozes universal groups to the setting of RABs.
I plan to give an introduction to RABs. As a complete formal introduction to buildings would take more than an hour, I will instead present various illustrative examples to give you an idea of what you should have in mind when you think of a (right-angled) building. I will be as formal as I can in presenting the basic features of buildings - Coxeter complexes, chambers, apartments, retractions and residues.  In the remaining time I will say as much as I can about the geometry of RABs, and explain how to use this geometry to derive a structure theorem for the automorphism group of a RAB, towards a definition of Burger-Mozes universal groups for RABs.
 

Thu, 07 Feb 2019

16:00 - 17:00
L6

Bohr sets and multiplicative diophantine approximation

Sam Chow
(Oxford University)
Abstract

Gallagher's theorem is a strengthening of the Littlewood conjecture that holds for almost all pairs of real numbers. I'll discuss some recent refinements of Gallagher's theorem, one of which is joint work with Niclas Technau. A key new ingredient is the correspondence between Bohr sets and generalised arithmetic progressions. It is hoped that these are the first steps towards a metric theory of multiplicative diophantine approximation on manifolds. 

Wed, 06 Feb 2019
16:00
C1

Cross ratios on boundaries of negatively curved spaces

Elia Fioravanti
(Oxford University)
Abstract

I will give a self-contained introduction to the theory of cross ratios on boundaries of Gromov hyperbolic and CAT(-1) spaces, focussing on the connections to the following two questions. When are two spaces with the 'same' Gromov boundary isometric/quasi-isometric? Are closed Riemannian manifolds completely determined (up to isometry) by the lengths of their closed geodesics?

Wed, 23 Jan 2019
16:00
C1

Commensurator rigidity from actions on graphs

Richard Wade
(Oxford University)
Abstract

I will give a description of a method introduced by N. Ivanov to study the abstract commensurator of a group by using a rigid action of that group on a graph. We will sketch Ivanov's theorem regarding the abstract commensurator of a mapping class group. Time permitting, I will describe how these methods are used in some of my recent work with Horbez on outer automorphism groups of free groups.

Tue, 22 Jan 2019

12:45 - 13:30
C5

Wave attenuation by flexible vegetation

Clint Wong
(Oxford University)
Abstract

Coastal vegetation has a well-known effect of attenuating waves; however, quantifiable measures of attenuation for general wave and vegetation scenarios are not well known. On the plant scale, there are extensive studies in predicting the dynamics of a single plant in an oscillatory flow. On the coastal scale however, there are yet to be compact models which capture the dynamics of both the flow and vegetation, when the latter exists in the form of a dense canopy along the bed. In this talk, we will discuss the open questions in the field and the modelling approaches involved. In particular, we investigate how micro-scale effects can be homogenised in space and how periodic motions can be averaged in time.

Wed, 16 Jan 2019
16:00
C1

Links between dimensions three and four

Matthias Nagel
(Oxford University)
Abstract

Knot theory investigates the many ways of embedding a circle into the three-dimensional sphere. The study of these embeddings is not only important for understanding three-dimensional manifolds, but is also intimately related to many new and surprising phenomena appearing in dimension four. I will discuss how four-dimensional interpretations of some invariants can help us understand surfaces that bound a given link (embedding of several disjoint circles).

Thu, 17 Jan 2019

16:00 - 17:00
L6

Elliptic analogs of multiple zeta values

Nils Matthes
(Oxford University)
Abstract

Multiple zeta values are generalizations of the special values of Riemann's zeta function at positive integers. They satisfy a large number of algebraic relations some of which were already known to Euler. More recently, the interpretation of multiple zeta values as periods of mixed Tate motives has led to important new results. However, this interpretation seems insufficient to explain the occurrence of several phenomena related to modular forms.

The aim of this talk is to describe an analog of multiple zeta values for complex elliptic curves introduced by Enriquez. We will see that these define holomorphic functions on the upper half-plane which degenerate to multiple zeta values at cusps. If time permits, we will explain how some of the rather mysterious modular phenomena pertaining to multiple zeta values can be interpreted directly via the algebraic structure of their elliptic analogs.

Thu, 28 Feb 2019
16:00
C3

A biased view of GRT

Filip Zivanovic
(Oxford University)
Abstract

Standard representation theory transforms groups=algebra into vector spaces = (linear) algebra. The modern approach, geometric representation theory constructs geometric objects from algebra and captures various algebraic representations through geometric gadgets/invariants on these objects. This field started with celebrated Borel-Weil-Bott and Beilinson-Bernstein theorems but equally is in rapid expansion nowadays. I will start from the very beginnings of this field and try to get to the recent developments (time permitting).

Subscribe to Oxford University