15:00
The Gibbons-Hawking ansatz and hyper-Kähler quotients
Abstract
Hyper-Kähler manifolds are rigid geometric structures. They have three different symplectic and complex structures, in direct analogy with the quaternions. Being Ricci-flat, they solve the vacuum Einstein equations, and so there has been considerable interest among physicists to explicitly construct such spaces. We will discuss in detail the examples arising from the Gibbons-Hawking ansatz. These give concrete descriptions of the metric, giving many examples to work with. They also lead to the generalised classification as hyper-Kähler quotients by P.B. Kronheimer, with one such space for each finite subgroup of SU(2). Finally, we will look at the McKay correspondence, relating the finite subgroups of SU(2) with the simple Lie algebras of type A,D,E.
16:00
Pointwise bounds for 3-torsion (note: Wednesday)
Abstract
For $\ell$ an odd prime number and $d$ a squarefree integer, a notable problem in arithmetic statistics is to give pointwise bounds for the size of the $\ell$-torsion of the class group of $\mathbb{Q}(\sqrt{d})$. This is in general a difficult problem, and unconditional pointwise bounds are only available for $\ell = 3$ due to work of Pierce, Helfgott—Venkatesh and Ellenberg—Venkatesh. The current record due to Ellenberg—Venkatesh is $h_3(d) \ll_\epsilon d^{1/3 + \epsilon}$. We will discuss how to improve this to $h_3(d) \ll d^{0.32}$. This is joint work with Peter Koymans.
17:00
Complete non-compact $\Spin(7)$-manifolds from $T^2$-bundles over asymptotically conical Calabi Yau manifolds
Abstract
We develop a new construction of complete non-compact 8-manifolds with holonomy equal to $\Spin(7)$. As a consequence of the holonomy reduction, these manifolds are Ricci-flat. These metrics are built on the total spaces of principal $T^2$-bundles over asymptotically conical Calabi Yau manifolds. The resulting metrics have a new geometry at infinity that we call asymptotically $T^2$-fibred conical ($AT^2C$) and which generalizes to higher dimensions the ALG metrics of 4-dimensional hyperkähler geometry. We use the construction to produce infinite diffeomorphism types of $AT^2C$ $\Spin(7)$-manifolds and to produce the first known example of complete toric $\Spin(7)$-manifold.
Some methods for finding vortex equilibria
Robb McDonald is a Professor in the Department of Mathematics. His research falls into two areas:
(i) geophysical fluid dynamics, including rotating stratified flows, rotating hydraulics, coastal outflows, geophysical vortices and topographic effects on geophysical flows.
(ii) complex variable methods applied to 2D free-boundary problems. This includes vortex dynamics, Loewner evolution, Hele-Shaw flows and Laplacian growth, industrial coating problems, and pattern formation in nature.
Abstract
Determining stationary compact configurations of vorticity described by the 2D Euler equations is a classic problem dating back to the late 19th century. The aim is to find equilibrium distributions of vorticity, in the form of point vortices, vortex sheets, vortex patches, and hollow vortices. This endeavour has driven the development of mathematical and numerical techniques such as Hamiltonian vortex dynamics and contour dynamics.
In the case of vortex sheets, methods and results are presented for finding rotating equilibria, some in the presence of point vortices. To begin, a numerical approach based on that recently developed by Trefethen, Costa, Baddoo, and others for solving Laplace's equation in the complex plane by series and rational approximation is described. The method successfully reproduces the exact vortex sheet solutions found by O'Neil (2018) and Protas & Sakajo (2020). Some new solutions are found.
The numerical approach suggests an analytical method based on conformal mapping for finding exact closed-form vortex sheet equilibria. Examples are presented.
Finally, new numerical solutions are computed for steady, doubly-connected vortex layers of uniform vorticity surrounding a solid object such that the fluid velocity vanishes on the outer free boundary. While dynamically unrelated, these solutions have mathematical analogy and application to the industrial free boundary problem arising in the dip-coating of objects by a viscous fluid.
CANCELLED - Proof of the Deligne—Milnor conjecture
Abstract
This talk is rescheduled and will take place on 21 January 2025
Proof of the Deligne—Milnor conjecture
Abstract
Let X --> S be a family of algebraic varieties parametrized by an infinitesimal disk S, possibly of mixed characteristic. The Bloch conductor conjecture expresses the difference of the Euler characteristics of the special and generic fibers in algebraic and arithmetic terms. I'll describe a proof of some new cases of this conjecture, including the case of isolated singularities. The latter was a conjecture of Deligne generalizing Milnor's formula on vanishing cycles.
This is joint work with Massimo Pippi; our methods use derived and non-commutative algebraic geometry.
Analysis and Numerical Approximation of Mean Field Game Partial Differential Inclusions
Abstract
The PDE formulation of Mean Field Games (MFG) is described by nonlinear systems in which a Hamilton—Jacobi—Bellman (HJB) equation and a Kolmogorov—Fokker—Planck (KFP) equation are coupled. The advective term of the KFP equation involves a partial derivative of the Hamiltonian that is often assumed to be continuous. However, in many cases of practical interest, the underlying optimal control problem of the MFG may give rise to bang-bang controls, which typically lead to nondifferentiable Hamiltonians. In this talk we present results on the analysis and numerical approximation of second-order MFG systems for the general case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians.
In particular, we propose a generalization of the MFG system as a Partial Differential Inclusion (PDI) based on interpreting the partial derivative of the Hamiltonian in terms of subdifferentials of convex functions.
We present theorems that guarantee the existence of unique weak solutions to MFG PDIs under a monotonicity condition similar to one that has been considered previously by Lasry & Lions. Moreover, we introduce a monotone finite element discretization of the weak formulation of MFG PDIs and prove the strong convergence of the approximations to the value function in the H1-norm and the strong convergence of the approximations to the density function in Lq-norms. We conclude the talk with some numerical experiments involving non-smooth solutions.
This is joint work with my supervisor Iain Smears.
16:00
Weyl Subconvexity, Generalized $PGL_2$ Kuznetsov Formulas, and Optimal Large Sieves
Abstract
Abstract: We give a generalized Kuznetsov formula that allows one to impose additional conditions at finitely many primes. The formula arises from the relative trace formula. I will discuss applications to spectral large sieve inequalities and subconvexity. This is work in progress with M.P. Young and Y. Hu.