Spectral coarse graining and rescaling for preserving structural and dynamical properties in graphs
Abstract
We introduce a graph renormalization procedure based on the coarse-grained Laplacian, which generates reduced-complexity representations across scales. This method retains both dynamics and large-scale topological structures, while reducing redundant information, facilitating the analysis of large graphs by decreasing the number of vertices. Applied to graphs derived from electroencephalogram recordings of human brain activity, our approach reveals collective behavior emerging from neuronal interactions, such as coordinated neuronal activity. Additionally, it shows dynamic reorganization of brain activity across scales, with more generalized patterns during rest and more specialized and scale-invariant activity in the occipital lobe during attention.