Thu, 19 Oct 2017
16:00
L6

Smooth values of polynomials

Trevor Wooley
(University of Bristol)
Abstract

Recall that an integer n is called y-smooth when each of its prime divisors is less than or equal to y. It is conjectured that, for any a>0,  any polynomial of positive degree having integral coefficients should possess infinitely many values at integral arguments n that are n^a-smooth. One could consider this problem to be morally “dual” to the cognate problem of establishing that irreducible polynomials assume prime values infinitely often, unless local conditions preclude this possibility. This smooth values conjecture is known to be true in several different ways for linear polynomials, but in general remains unproven for any degree exceeding 1. We will describe some limited progress in the direction of the conjecture, highlighting along the way analogous conclusions for polynomial smoothness. Despite being motivated by a problem in analytic number theory, most of the methods make use of little more than pre-Galois theory. A guest appearance will be made by several hyperelliptic curves. [This talk is based on work joint with Jonathan Bober, Dan Fretwell and Greg Martin].

Wed, 07 Mar 2018
14:00
L5

Catch me if you can: locating (and fixing) side channel leaks

Elisabeth Oswald
(University of Bristol)
Abstract

Side channel leakage is no longer just a concern for industries that
traditionally have a high degree of awareness and expertise in
(implementing) cryptography. With the rapid growth of security
sensitive applications in other areas, e.g. smartphones, homes, etc.
there is a clear need for developers with little to no crypto
expertise to implement and instantiate cryptography securely on
embedded devices. In this talk, I explain what makes finding side
channel leaks challenging (in theory and in practice) and give an
update on our latest work to develop methods and tools to enable
non-domain experts to ‘get a grip’ on leakage in their
implementations.

Mon, 16 Jan 2017

16:00 - 17:00
L4

A survey of discrete analogues in harmonic analysis

Kevin Hughes
(University of Bristol)
Abstract

In this talk we will motivate and discuss several problems and results in harmonic analysis that involve some arithmetic or discrete structure. We will focus on pioneering work of Bourgain on discrete restriction theorems and pointwise ergodic theorems for arithmetic sets, their modern developments and future directions for the field.

Wed, 30 Nov 2016
15:00
L5

On Ring Learning with Errors and its uses in cryptography

Ana Costache
(University of Bristol)
Abstract

We introduce Learning with Errors and Ring Learning with Errors, two hard
lattice problems which are widely used for security of Homomorphic
Encryption schemes. Following a study we conducted comparing four such
schemes, the best scheme was the so-called BGV scheme, introduced by
Brakerski-Gentry-Vaikuntanathan in 2012. We present it as an example of a
ring-based homomorphic scheme, discussing its number theoretic
optimisations.

Tue, 25 Oct 2016
14:30
L6

New bounds for Roth's theorem on arithmetic progressions

Thomas Bloom
(University of Bristol)
Abstract

In joint work with Olof Sisask, we establish new quantitative bounds for Roth's theorem on arithmetic progressions, showing that a set of integers with no three-term arithmetic progressions must have density O(1/(log N)^{1+c}) for some absolute constant c>0. This is the integer analogue of a result of Bateman and Katz for the model setting of vector spaces over a finite field, and the proof follows a similar structure. 

Thu, 10 Nov 2016
16:00
L6

Effective equidistribution of rational points on expanding horospheres

Min Lee
(University of Bristol)
Abstract

The equidistribution theorem for rational points on expanding horospheres with fixed denominator in the space of d-dimensional Euclidean lattices has been derived in the work by M. Einsiedler, S. Mozes, N. Shah and U. Shapira. The proof of their theorem requires ergodic theoretic tools, including Ratner's measure classification theorem. In this talk I will present an alternative approach, based on harmonic analysis and Weil's bound for Kloosterman sums. In the case of d=3, unlike the ergodic-theoretic approach, this provides an explicit estimate on the rate of convergence. This is a joint work with Jens Marklof. 

Thu, 26 May 2016
16:00
L6

Sub-convexity in certain Diophantine problems via the circle method

Trevor Wooley
(University of Bristol)
Abstract

The sub-convexity barrier traditionally prevents one from applying the Hardy-Littlewood (circle) method to Diophantine problems in which the number of variables is smaller than twice the inherent total degree. Thus, for a homogeneous polynomial in a number of variables bounded above by twice its degree, useful estimates for the associated exponential sum can be expected to be no better than the square-root of the associated reservoir of variables. In consequence, the error term in any application of the circle method to such a problem cannot be expected to be smaller than the anticipated main term, and one fails to deliver an asymptotic formula. There are perishingly few examples in which this sub-convexity barrier has been circumvented, and even fewer having associated degree exceeding two. In this talk we review old and more recent progress, and exhibit a new class of examples of Diophantine problems associated with, though definitely not, of translation-invariant type.

Tue, 13 Oct 2015
16:30
L6

Unconditional hardness results and a tricky coin weighing puzzle

Raphaël Clifford
(University of Bristol)
Abstract

It has become possible in recent years to provide unconditional lower bounds on the time needed to perform a number of basic computational operations. I will briefly discuss some of the main techniques involved and show how one in particular, the information transfer method, can be exploited to give  time lower bounds for computation on streaming data.

I will then go on to present a simple looking mathematical conjecture with a probabilistic combinatorics flavour that derives from this work.  The conjecture is related to the classic "coin weighing with a spring scale" puzzle but has so far resisted our best efforts at resolution.

Wed, 20 Jan 2016
15:00
L4

Multi Party Computation: Low Communication Protocols

Nigel Smart
(University of Bristol)
Abstract

In recent years there has been amazing progress in building
practical protocols for Multi-Party Computation (MPC).
So much progress in fact that there are now a number of
companies producing products utilizing this technology. A major issue with existing solutions is the high round
complexity of protocols involving more than two players. In this talk I will survey the main protocols for MPC
and recent ideas in how to obtain practical low round
complexity protocols.

Thu, 12 May 2016

16:00 - 17:00
L3

Cancelled - Mathematical Problems within the Analysis of Transport Data

Eddie Wilson
(University of Bristol)
Abstract

My main purpose in this talk is try and convey a sense of my enthusiasm for mathematical modelling generally and how I've come to use it in a range of transport applications. For concreteness, I am going to talk in particular about work I have been doing on EPSRC grant EP/K000438/1 (PI: Jillian Anable, Aberdeen) where we are using the UK government's Department for Transport MOT data to estimate mileage totals and study how they are broken down across the population in various different ways. Embedded inside this practical problem is a whole set of miniature mathematical puzzles and challenges which are quite particular to the problem area itself, and one wider question which is rather deeper and more general: whether it is possible (and how) to convert usage data that is low-resolution in time but high-resolution in individuals to knowledge that is high-resolution in time but only expressed at a population level.

Subscribe to University of Bristol