Thu, 30 Apr 2015

16:00 - 17:00
L6

Quadratic Weyl Sums, Automorphic Functions, and Invariance Principles

Jens Marklof
(University of Bristol)
Abstract

Hardy and Littlewood's approximate functional equation for quadratic Weyl sums (theta sums) provides, by iterative application, a powerful tool for the asymptotic analysis of such sums. The classical Jacobi theta function, on the other hand, satisfies an exact functional equation, and extends to an automorphic function on the Jacobi group. In the present study we construct a related, almost everywhere non-differentiable automorphic function, which approximates quadratic Weyl sums up to an error of order one, uniformly in the summation range. This not only implies the approximate functional equation, but allows us to replace Hardy and Littlewood's renormalization approach by the dynamics of a certain homogeneous flow. The great advantage of this construction is that the approximation is global, i.e., there is no need to keep track of the error terms accumulating in an iterative procedure. Our main application is a new functional limit theorem, or invariance principle, for theta sums. The interesting observation here is that the paths of the limiting process share a number of key features with Brownian motion (scale invariance, invariance under time inversion, non-differentiability), although time increments are not independent and the value distribution at each fixed time is distinctly different from a normal distribution. Joint work with Francesco Cellarosi.

Thu, 12 Mar 2015

16:00 - 17:00
L5

Arithmetic Statistics in Function Fields

Jon Keating
(University of Bristol)
Abstract

I will review some classical problems in number theory concerning the statistical distribution of the primes, square-free numbers and values of the divisor function; for example, fluctuations in the number of primes in short intervals and in arithmetic progressions.  I will then explain how analogues of these problems in the function field setting can be resolved by expressing them in terms of matrix integrals. 

Thu, 05 Feb 2015

16:00 - 17:00
L5

L-functions as distributions

Andrew Booker
(University of Bristol)
Abstract

In 1989, Selberg defined what came to be known as the "Selberg class" of $L$-functions, giving rise to a new subfield of analytic number theory in the intervening quarter century. Despite its popularity, a few things have always bugged me about the definition of the Selberg class. I will discuss these nitpicks and describe some modest attempts at overcoming them, with new applications.

Fri, 21 Nov 2014

14:15 - 15:15
C1

Modelling Volcanic Plumes

Mark Woodhouse
(University of Bristol)
Abstract

Explosive volcanic eruptions often produce large amounts of ash that is transported high into the atmosphere in a turbulent buoyant plume.  The ash can be spread widely and is hazardous to aircraft causing major disruption to air traffic.  Recent events, such as the eruption of Eyjafjallajokull, Iceland, in 2010 have demonstrated the need for forecasts of ash transport to manage airspace.  However, the ash dispersion forecasts require boundary conditions to specify the rate at which ash is delivered into the atmosphere.

 

Models of volcanic plumes can be used to describe the transport of ash from the vent into the atmosphere.  I will show how models of volcanic plumes can be developed, building on classical fluid mechanical descriptions of turbulent plumes developed by Morton, Taylor and Turner (1956), and how these are used to determine the volcanic source conditions.  I will demonstrate the strong atmospheric controls on the buoyant plume rise.  Typically steady models are used as solutions can be obtained rapidly, but unsteadiness in the volcanic source can be important.  I'll discuss very recent work that has developed unsteady models of volcanic plumes, highlighting the mathematical analysis required to produce a well-posed mathematical description.

Thu, 01 May 2014

16:00 - 17:00
L5

Effective Ratner Theorem for $ASL(2, R)$ and the gaps of the sequence $\sqrt n$ modulo 1

Ilya Vinogradov
(University of Bristol)
Abstract

Let $G=SL(2,\R)\ltimes R^2$ and $\Gamma=SL(2,Z)\ltimes Z^2$. Building on recent work of Strombergsson we prove a rate of equidistribution for the orbits of a certain 1-dimensional unipotent flow of $\Gamma\G$, which projects to a closed horocycle in the unit tangent bundle to the modular surface. We use this to answer a question of Elkies and McMullen by making effective the convergence of the gap distribution of $\sqrt n$ mod 1.

Mon, 10 Mar 2014

17:00 - 18:00
L6

Point defects in liquid crystals.

Valeriy Slastikov
(University of Bristol)
Abstract

We study liquid crystal point defects in 2D domains. We employ Landau-de

Gennes theory and provide a simplified description of global minimizers

of Landau- de Gennes energy under homeothropic boundary conditions. We

also provide explicit solutions describing defects of various strength

under Lyuksutov's constraint.

Fri, 31 Jan 2014

14:15 - 15:15
C6

The fast flow of Jakobshavn and its subglacial drainage system

Mauro Werder
(University of Bristol)
Abstract

Jakobshavn Isbrae and many other fast flowing outlet glaciers of present

and past ice sheets lie in deep troughs which often have several

overdeepened sections. To make their fast flow possible their bed needs

to be slippery which in turn means high basal water pressures. I will

present a model of subglacial water flow and its application to

Jakobshavn. I find that, somewhat surprisingly, the reason for

Jakobshavn's fast flow might be the pressure dependence of the melting

point of ice. The model itself describes the unusual fluid dynamics occurring underneath the ice; it has an interesting mathematical structure that presents computational challenges.

Subscribe to University of Bristol