Crossed simplicial groups and invariants of structured surfaces
Abstract
Crossed simplicial groups were introduced independently by Krasauskas and Fiedorowicz-Loday as analogues of Connes' cyclic category. In this talk, I will explain a new perspective on a certain class of crossed simplicial groups, relating them to structured surfaces. This provides a combinatorial approach to categorical invariants of surfaces which leads to known, expected, and new examples. (Based on joint work with Mikhail Kapranov.)
Application of some deterministic techniques to Bayesian inference
Abstract
Quantifying the uncertainty in computational simulations is one of the central challenges confronting the field of computational science and engineering today. The uncertainty quantification of inverse problems is neatly addressed in the Bayesian framework, where instead of seeking one unique minimiser of a regularised misfit functional, the entire posterior probability distribution is to be characterised. In this talk I review the deep connection between deterministic PDE-constrained optimisation techniques and Bayesian inference for inverse problems, discuss some recent advances made in the Bayesian viewpoint by adapting deterministic techniques, and mention directions for future research.
The existence of designs
Abstract
A Steiner Triple System on a set X is a collection T of 3-element subsets of X such that every pair of elements of X is contained in exactly one of the triples in T. An example considered by Plücker in 1835 is the affine plane of order three, which consists of 12 triples on a set of 9 points. Plücker observed that a necessary condition for the existence of a Steiner Triple System on a set with n elements is that n be congruent to 1 or 3 mod 6. In 1846, Kirkman showed that this necessary condition is also sufficient.
In 1853, Steiner posed the natural generalisation of the question: given integers q and r, for which n is it possible to choose a collection Q of q-element subsets of an n-element set X such that any r elements of X are contained in exactly one of the sets in Q? There are some natural necessary divisibility conditions generalising the necessary conditions for Steiner Triple Systems. The Existence Conjecture states that for all but finitely many n these divisibility conditions are also sufficient for the existence of general Steiner systems (and more generally designs).
We prove the Existence Conjecture, and more generally, we show that the natural divisibility conditions are sufficient for clique decompositions of simplicial complexes that satisfy a certain pseudorandomness condition.
An algorithm for the convolution of Legendre expansions
Abstract
Convolution is widely-used and fundamental mathematical operation
in signal processing, statistics, and PDE theory.
Unfortunately the CONV() method in Chebfun for convolving two chebfun
objects has long been one of the most disappointingly slow features of
the project. In this talk we will present a new algorithm, which shows
performance gains on the order of a factor 100.
The key components of the new algorithm are:
* a convolution theorem for Legendre polynomials
* recurrence relations satisfied by spherical Bessel functions
* recent developments in fast Chebyshev-Legendre transforms [1]
Time-permitting, we shall end with an application from statistics,
using the fact that the probability distribution of the sum of two
independent random variables is the convolution of their individual
distributions.
[1] N. Hale and A. Townsend, "A fast, simple, and stable Chebyshev-
Legendre transform using an asymptotic formula”, SISC (to appear).
The splitting method for SPDEs: from robustness to applications in financial engineering, nonlinear filtering and optimal control
Abstract
The splitting-up method is a powerful tool to solve (SP)DEs by dividing the equation into a set of simpler equations that are easier to handle. I will speak about how such splitting schemes can be derived and extended by insights from the theory of rough paths.
Finally, I will discuss numerics for real-world applications that appear in the management of risk and engineering applications like nonlinear filtering.
Discretely sampled signals and the rough Hoff path
Abstract
Sampling a $d$-dimensional continuous signal (say a semimartingale) $X:[0,T] \rightarrow \mathbb{R}^d$ at times $D=(t_i)$, we follow the recent papers [Gyurko-Lyons-Kontkowski-Field-2013] and [Lyons-Ni-Levin-2013] in constructing a lead-lag path; to be precise, a piecewise-linear, axis-directed process $X^D: [0,1] \rightarrow
\mathbb{R}^{2d}$ comprised of a past and future component. Lifting $X^D$ to its natural rough path enhancement, we can consider the question of convergence as
the latency of our sampling becomes finer.