Fri, 13 Jun 2025

12:00 - 13:00
Quillen Room

TBD

Ittihad Hasib
(University of Warwick)
Abstract

TBD

Mon, 28 Apr 2025
14:15
L5

Complex Dynamics — degenerations and irreducibility problems

Rohini Ramadas
(University of Warwick)
Abstract

Complex dynamics is the study of the behaviour, under iteration, of complex polynomials and rational functions. This talk is about an application of combinatorial algebraic geometry to complex dynamics. The n-th Gleason polynomial G_n is a polynomial in one variable with Z-coefficients, whose roots correspond to degree-2 polynomials with an n-periodic critical point. Per_n is a (nodal) Riemann surface parametrizing degree-2 rational functions with an n-periodic critical point. Two long-standing open questions are: (1) Is G_n is irreducible over Q? (2) Is Per_n connected? I will sketch an argument showing that if G_n is irreducible over Q, then Per_n is connected. In order to do this, we find a special degeneration of degree-2 rational maps that tells us that Per_n has smooth point with Q-coordinates "at infinity”.

Tue, 04 Feb 2025

14:00 - 15:00
L4

Normal covering numbers for groups and connections to additive combinatorics

Sean Eberhard
(University of Warwick)
Abstract

The normal covering number $\gamma(G)$ of a finite group $G$ is the minimal size of a collection of proper subgroups whose conjugates cover the group. This definition is motivated by number theory and related to the concept of intersective polynomials. For the symmetric and alternating groups we will see how these numbers are closely connected to some elementary (as in "relating to basic concepts", not "easy") problems in additive combinatorics, and we will use this connection to better understand the asymptotics of $\gamma(S_n)$ and $\gamma(A_n)$ as $n$ tends to infinity.

Tue, 25 Feb 2025
16:00
L6

The Critical 2d Stochastic Heat Flow and some first properties

Nikos Zygouras
(University of Warwick)
Abstract

The Critical 2d Stochastic Heat Flow arises as a non-trivial solution
of the Stochastic Heat Equation (SHE) at the critical dimension 2 and at a phase transition point.
It is a log-correlated field which is neither Gaussian nor a Gaussian Multiplicative Chaos.
We will review the phase transition of the 2d SHE, describe the main points of the construction of the Critical 2d SHF
and outline some of its features and related questions. Based on joint works with Francesco Caravenna and Rongfeng Sun.

Tue, 11 Jun 2024
11:00
L5

Renormalised Amperean area for 2D Higgs-Yang-Mills Field

Dr Isao Sauzedde
(University of Warwick)
Abstract

The objective of the talk is to present elements of Euclidean Quantum Field Theory and of the Symanzik's polymer representation for a model which includes an interaction with a magnetic field. We will explain how the problem of constructing such an EQFT can be translated into the problem of renormalising the Amperean area of a planar Brownian motion, an object that we will introduce during the talk. No prerequisite knowledge of the topic is expected.

Based on http://perso.ens-lyon.fr/isao.sauzedde/square_field3_3.pdf 

Tue, 30 Apr 2024

14:00 - 15:00
L4

The rainbow saturation number

Natalie Behague
(University of Warwick)
Abstract

The saturation number of a graph is a famous and well-studied counterpoint to the Turán number, and the rainbow saturation number is a generalisation of the saturation number to the setting of coloured graphs. Specifically, for a given graph $F$, an edge-coloured graph is $F$-rainbow saturated if it does not contain a rainbow copy of $F$, but the addition of any non-edge in any colour creates a rainbow copy of $F$. The rainbow saturation number of $F$ is the minimum number of edges in an $F$-rainbow saturated graph on $n$ vertices. Girão, Lewis, and Popielarz conjectured that, like the saturation number, for all $F$ the rainbow saturation number is linear in $n$. I will present our attractive and elementary proof of this conjecture, and finish with a discussion of related results and open questions.

Thu, 22 Feb 2024

12:00 - 13:00
L3

Structural identifiability analysis: An important tool in systems modelling

Michael Chappell
(University of Warwick)
Abstract

For many systems (certainly those in biology, medicine and pharmacology) the mathematical models that are generated invariably include state variables that cannot be directly measured and associated model parameters, many of which may be unknown, and which also cannot be measured.  For such systems there is also often limited access for inputs or perturbations. These limitations can cause immense problems when investigating the existence of hidden pathways or attempting to estimate unknown parameters and this can severely hinder model validation. It is therefore highly desirable to have a formal approach to determine what additional inputs and/or measurements are necessary in order to reduce or remove these limitations and permit the derivation of models that can be used for practical purposes with greater confidence.

Structural identifiability arises in the inverse problem of inferring from the known, or assumed, properties of a biomedical or biological system a suitable model structure and estimates for the corresponding rate constants and other model parameters.  Structural identifiability analysis considers the uniqueness of the unknown model parameters from the input-output structure corresponding to proposed experiments to collect data for parameter estimation (under an assumption of the availability of continuous, noise-free observations).  This is an important, but often overlooked, theoretical prerequisite to experiment design, system identification and parameter estimation, since estimates for unidentifiable parameters are effectively meaningless.  If parameter estimates are to be used to inform about intervention or inhibition strategies, or other critical decisions, then it is essential that the parameters be uniquely identifiable. 

Numerous techniques for performing a structural identifiability analysis on linear parametric models exist and this is a well-understood topic.  In comparison, there are relatively few techniques available for nonlinear systems (the Taylor series approach, similarity transformation-based approaches, differential algebra techniques and the more recent observable normal form approach and symmetries approaches) and significant (symbolic) computational problems can arise, even for relatively simple models in applying these techniques.

In this talk an introduction to structural identifiability analysis will be provided demonstrating the application of the techniques available to both linear and nonlinear parameterised systems and to models of (nonlinear mixed effects) population nature.


 
Tue, 13 Feb 2024

14:00 - 15:00
L4

On the $(k+2,k)$-problem of Brown, Erdős and Sós

Oleg Pikhurko
(University of Warwick)
Abstract

Brown-Erdős-Sós initiated the study of the maximum number of edges in an $n$-vertex $r$-graph such that no $k$ edges span at most $s$ vertices. If $s=rk-2k+2$ then this function is quadratic in $n$ and its asymptotic was previously known for $k=2,3,4$. I will present joint work with Stefan Glock, Jaehoon Kim, Lyuben Lichev and Shumin Sun where we resolve the cases $k=5,6,7$.

Fri, 23 Feb 2024

12:00 - 13:00
Quillen Room

Homotopy type of SL2 quotients of simple simply connected complex Lie groups

Dylan Johnston
(University of Warwick)
Abstract
We say an element X in a Lie algebra g is nilpotent if ad(X) is a nilpotent operator. It is known that G_{ad}-orbits of nilpotent elements of a complex semisimple Lie algebra g are in 1-1 correspondence with Lie algebra homomorphisms sl2 -> g, which are in turn in 1-1 correspondence with Lie group homomorphisms SL2 -> G.
Thus, we may denote the homogeneous space obtained by quotienting G by the image of a Lie group homomorphism SL2 -> G by X_v, where v is a nilpotent element in the corresponding G_{ad}-orbit.
In this talk we introduce some algebraic tools that one can use to attempt to classify the homogeneous spaces, X_v, up to homotopy equivalence.
Wed, 14 Feb 2024

16:00 - 17:00
L6

One-ended graph braid groups and where to find them

Ruta Sliazkaite
(University of Warwick)
Abstract

Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.

Subscribe to University of Warwick