Thu, 23 Nov 2023
16:00
L5

Anticyclotomic p-adic L-functions for U(n) x U(n+1)  

Xenia Dimitrakopoulou
(University of Warwick)
Abstract

I will report on current work in progress on the construction of anticyclotomic p-adic L-functions for Rankin--Selberg products. I will explain how by p-adically interpolating the branching law for the spherical pair (U(n)xU(n+1), U(n)) we can construct a p-adic L-function attached to cohomological automorphic representations of U(n) x U(n+1), including anticyclotomic variation. Due to the recent proof of the unitary Gan--Gross--Prasad conjecture, this p-adic L-function interpolates the square root of the central L-value. Time allowing, I will explain how we can extend this result to the Coleman family of an automorphic representation.

Thu, 02 Nov 2023
16:00
L5

Partition regularity of Pythagorean pairs

Joel Moreira
(University of Warwick)
Abstract

Is there a partition of the natural numbers into finitely many pieces, none of which contains a Pythagorean triple (i.e. a solution to the equation x2+y2=z2)? This is one of the simplest questions in arithmetic Ramsey theory which is still open. I will present a recent partial result, showing that in any finite partition of the natural numbers there are two numbers x,y in the same cell of the partition, such that x2+y2=z2 for some integer z which may be in a different cell. 

The proof consists, after some initial maneuvers inspired by ergodic theory, in controlling the behavior of completely multiplicative functions along certain quadratic polynomials. Considering separately aperiodic and "pretentious" functions, the last major ingredient is a concentration estimate for functions in the latter class when evaluated along sums of two squares.

The talk is based on joint work with Frantzikinakis and Klurman.

Thu, 08 Jun 2023

12:00 - 13:00
Lecture room 5

Mathematical Modelling of Metal Forming

Ed Brambley
(University of Warwick)
Abstract

Metal forming involves permanently deforming metal into a required shape.  Many forms of metal forming are used in industry: rolling, stamping, pressing, drawing, etc; for example, 99% of steel produced globally is first rolled before any subsequent processing.  Most theoretical studies of metal forming use Finite Elements, which is not fast enough for real-time control of metal forming processes, and gives little extra insight.  As an example of how little is known, it is currently unknown whether a sheet of metal that is squashed between a large and a small roller should curve towards the larger roller, or towards the smaller roller.  In this talk, I will give a brief overview of metal forming, and then some progress my group have been making on some very simplified models of cold sheet rolling in particular.  The mathematics involved will include some modelling and asymptotics, multiple scales, and possibly a matrix Wiener-Hopf problem if time permits.

Thu, 30 Nov 2023

12:00 - 13:00
L1

Droplet dynamics in the presence of gas nanofilms: merging, wetting, bouncing & levitation

James Sprittles
(University of Warwick)
Abstract

Recent advances in experimental techniques have enabled remarkable discoveries and insight into how the dynamics of thin gas/vapour films can profoundly influence the behaviour of liquid droplets: drops impacting solids can “skate on a film of air” [1], so that they can “bounce off walls” [2,3]; reductions in ambient gas pressure can suppress splashing [4] and initiate the merging of colliding droplets [5]; and evaporating droplets can levitate on their own vapour film [7] (the Leidenfrost effect). Despite these advances, the precise physical mechanisms governing these phenomena remains a topic of debate.  A theoretical approach would shed light on these issues, but due to the strongly multiscale nature of these processes brute force computation is infeasible.  Furthermore, when films reach the scale of the mean free path in the gas (i.e. ~100nm) and below, new nanoscale physics appears that renders the classical Navier-Stokes paradigm inaccurate.

In this talk, I will overview our development of efficient computational models for the aforementioned droplet dynamics in the presence of gas nanofilms into which gas-kinetic, van der Waals and/or evaporative effects can be easily incorporated [8,9].  It will be shown that these models can reproduce experimental observations – for example, the threshold between bouncing and wetting for drop impact on a solid is reproduced to within 5%, whilst a model excluding either gas-kinetic or van der Waals effects is ~170% off!  These models will then be exploited to make new experimentally-verifiable predictions, such as how we expect drops to behave in reduced pressure environments.  Finally, I will conclude with some exciting directions for future wor


[1] JM Kolinski et al, Phys. Rev. Lett.  108 (2012), 074503. [2] JM Kolinski et al, EPL.  108 (2014), 24001. [3] J de Ruiter et al, Nature Phys.  11 (2014), 48. [4] L Xu et al, Phys. Rev. Lett. 94 (2005), 184505. [5] J Qian & CK Law, J. Fluid. Mech. 331 (1997), 59.  [6] KL Pan J. Appl. Phys. 103 (2008), 064901. [7] D Quéré, Ann. Rev. Fluid Mech. 45 (2013), 197. [8] JE Sprittles, Phys. Rev. Lett.  118 (2017), 114502.  [9] MV Chubynsky et al, Phys. Rev. Lett.. 124 (2020), 084501.
Mon, 12 Jun 2023
16:00
C3

Probabilistic aspects of the Riemann zeta function

Khalid Younis
(University of Warwick)
Abstract

A central topic of study in analytic number theory is the behaviour of the Riemann zeta function. Many theorems and conjectures in this area are closely connected to concepts from probability theory. In this talk, we will discuss several results on the typical size of the zeta function on the critical line, over different scales. Along the way, we will see the role that is played by some probabilistic phenomena, such as the central limit theorem and multiplicative chaos.

Mon, 22 May 2023
16:00
C3

The modular approach for solving $x^r+y^r=z^p$ over totally real number fields

Diana Mocanu
(University of Warwick)
Abstract

We will first introduce the modular method for solving Diophantine Equations, famously used to
prove the Fermat Last Theorem. Then, we will see how to generalize it for a totally real number field $K$ and
a Fermat-type equation $Aa^p+Bb^q=Cc^r$ over $K$. We call the triple of exponents $(p,q,r)$ the 
signature of the equation. We will see various results concerning the solutions to the Fermat equation with
signatures $(r,r,p)$ (fixed $r$). This will involve image of inertia comparison and the study of certain
$S$-unit equations over $K$. If time permits, we will discuss briefly how to attack the very similar family
of signatures $(p,p,2)$ and $(p,p,3)$. 

Fri, 26 May 2023

12:00 - 13:00
N3.12

Non-ordinary conjectures in Iwasawa Theory

Muhammad Manji
(University of Warwick)
Abstract

The Iwasawa main conjecture, first developed in the 1960s and later generalised to a modular forms setting, is the prediction that algebraic and analytic constructions of a p-adic L-function agree. This has applications towards the Birch—Swinnerton-Dyer conjecture and many similar problems. This was proved by Kato (’04) and Skinner—Urban (’06) for ordinary modular forms. Progress in the non-ordinary setting is much more recent, requiring tools from p-adic Hodge theory and rigid analytic geometry. I aim to give an overview of this and discuss a new approach in the setting of unitary groups where even more things go wrong.

Thu, 16 Nov 2023

14:00 - 15:00
Lecture Room 3

Finite element schemes and mesh smoothing for geometric evolution problems

Bjorn Stinner
(University of Warwick)
Abstract

Geometric evolutions can arise as simple models or fundamental building blocks in various applications with moving boundaries and time-dependent domains, such as grain boundaries in materials or deforming cell boundaries. Mesh-based methods require adaptation and smoothing, particularly in the case of strong deformations. We consider finite element schemes based on classical approaches for geometric evolution equations but augmented with the gradient of the Dirichlet energy or a variant of it, which is known to produce a tangential mesh movement beneficial for the mesh quality. We focus on the one-dimensional case, where convergence of semi-discrete schemes can be proved, and discuss two cases. For networks forming triple junctions, it is desirable to keep the impact of any additional, mesh smoothing terms on the geometric evolution as small as possible, which can be achieved with a perturbation approach. Regarding the elastic flow of curves, the Dirichlet energy can serve as a replacement of the usual penalty in terms of the length functional in that, modulo rescaling, it yields the same minimisers in the long run.

Mon, 13 Feb 2023
14:15
L4

Some glueing constructions in Lagrangian mean curvature flow

Wei-Bo Su
(University of Warwick)
Abstract

Glueing construction has been used extensively to construct solutions to nonlinear geometric PDEs. In this talk, I will focus on the glueing construction of solutions to Lagrangian mean curvature flow. Specifically, I will explain the construction of Lagrangian translating solitons by glueing a small special Lagrangian 'Lawlor neck' into the intersection point of suitably rotated Lagrangian Grim Reaper cylinders. I will also discuss an ongoing joint project with Chung-Jun Tsai and Albert Wood, where we investigate the construction of solutions to Lagrangian mean curvature flow with infinite time singularities.

Subscribe to University of Warwick