Tue, 13 Feb 2024

14:00 - 15:00
L4

On the (k+2,k)-problem of Brown, Erdős and Sós

Oleg Pikhurko
(University of Warwick)
Abstract

Brown-Erdős-Sós initiated the study of the maximum number of edges in an n-vertex r-graph such that no k edges span at most s vertices. If s=rk2k+2 then this function is quadratic in n and its asymptotic was previously known for k=2,3,4. I will present joint work with Stefan Glock, Jaehoon Kim, Lyuben Lichev and Shumin Sun where we resolve the cases k=5,6,7.

Fri, 23 Feb 2024

12:00 - 13:00
Quillen Room

Homotopy type of SL2 quotients of simple simply connected complex Lie groups

Dylan Johnston
(University of Warwick)
Abstract
We say an element X in a Lie algebra g is nilpotent if ad(X) is a nilpotent operator. It is known that G_{ad}-orbits of nilpotent elements of a complex semisimple Lie algebra g are in 1-1 correspondence with Lie algebra homomorphisms sl2 -> g, which are in turn in 1-1 correspondence with Lie group homomorphisms SL2 -> G.
Thus, we may denote the homogeneous space obtained by quotienting G by the image of a Lie group homomorphism SL2 -> G by X_v, where v is a nilpotent element in the corresponding G_{ad}-orbit.
In this talk we introduce some algebraic tools that one can use to attempt to classify the homogeneous spaces, X_v, up to homotopy equivalence.
Wed, 14 Feb 2024

16:00 - 17:00
L6

One-ended graph braid groups and where to find them

Ruta Sliazkaite
(University of Warwick)
Abstract

Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.

Tue, 30 Jan 2024

14:00 - 15:00
L4

Kneser graphs are Hamiltonian

Torsten Mütze
(University of Warwick)
Abstract

For integers k1 and n2k+1, the Kneser graph K(n,k) has as vertices all k-element subsets of an n-element ground set, and an edge between any two disjoint sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one notable exception, namely the Petersen graph K(5,2). This problem received considerable attention in the literature, including a recent solution for the sparsest case n=2k+1. The main contribution of our work is to prove the conjecture in full generality. We also extend this Hamiltonicity result to all connected generalized Johnson graphs (except the Petersen graph). The generalized Johnson graph J(n,k,s) has as vertices all k-element subsets of an n-element ground set, and an edge between any two sets whose intersection has size exactly s. Clearly, we have K(n,k)=J(n,k,0), i.e., generalized Johnson graphs include Kneser graphs as a special case. Our results imply that all known families of vertex-transitive graphs defined by intersecting set systems have a Hamilton cycle, which settles an interesting special case of Lovász' conjecture on Hamilton cycles in vertex-transitive graphs from 1970. Our main technical innovation is to study cycles in Kneser graphs by a kinetic system of multiple gliders that move at different speeds and that interact over time, reminiscent of the gliders in Conway’s Game of Life, and to analyze this system combinatorially and via linear algebra.

This is joint work with my students Arturo Merino (TU Berlin) and Namrata (Warwick).

Thu, 25 Jan 2024

12:00 - 13:00
L3

Collective motion and environmental path entropy

Matthew Turner
(University of Warwick)
Further Information

Matthew Turner is a Professor in the Physics department, attached to the Complexity center, at Warwick University. He works on Biological and Soft Matter Physics, amongst other things.

Abstract

 

We study “bottom-up” models for the collective motion of large groups of animals. Similar models can be encoded into (micro)robotic matter, capable of sensing light and processing information. Agents are endowed only with visual sensing and information processing. We study a model in which moving agents reorientate to maximise the path-entropy of their visual environment over paths into the future. There are general arguments that principles like this that are based on retaining freedom in the future may confer fitness in an uncertain world. Alternative “top-down” models are more common in the literature. These typically encode coalignment and/or cohesion directly and are often motivated by models drawn from physics, e.g. describing spin systems. However, such models can usually give little insight into how co-alignment and cohesion emerge because these properties are encoded in the model at the outset, in a top-down manner. We discuss how our model leads to dynamics with striking similarities with animal systems, including the emergence of coalignment, cohesion, a characteristic density scaling anddifferent behavioural phenotypes. The dynamics also supports a very unusual order-disorder transition in which the order (coalignment) initially increases upon the addition of sensory or behavioural noise, before decreasing as the noise becomes larger.

 

 

Mon, 22 Jan 2024
16:00
L2

Computing Tangent Spaces to Eigenvarieties

James Rawson
(University of Warwick)
Abstract

Many congruences between modular forms (or at least their q-expansions) can be explained by the theory of p-adic families of modular forms. In this talk, I will discuss properties of eigenvarieties, a geometric interpretation of the idea of p-adic families. In particular, focusing initially on the well-understood case of (elliptic) modular forms, before delving into the considerably murkier world of Bianchi modular forms. In this second case, this work gives numerical verification of a couple of conjectures, including BSD by work of Loeffler and Zerbes.

Tue, 23 Apr 2024

14:00 - 15:00
L5

Symmetric spaces, where Topology meets Representation Theory

Dmitriy Rumynin
(University of Warwick)
Abstract

We will use Representation Theory to calculate systematically and efficiently the topological invariants of compact Lie groups and homogeneous spaces.
 

Most of the talk is covered by our second paper on ArXiv with John Jones and Adam Thomas, who are both at Warwick. The paper is part of the ongoing project to study the topological invariants of the four exceptional Rosenfeld projective planes.

Mon, 30 Oct 2023

16:30 - 17:30
L3

Elasto-plasticity driven by dislocation movement

Filip Rindler
(University of Warwick)
Abstract

This talk presents some recent progress for models coupling large-strain, geometrically nonlinear elasto-plasticity with the movement of dislocations. In particular, a new geometric language is introduced that yields a natural mathematical framework for dislocation evolutions. In this approach, the fundamental notion is that of 2-dimensional "slip trajectories" in space-time (realized as integral 2-currents), and the dislocations at a given time are recovered via slicing. This modelling approach allows one to prove the existence of solutions to an evolutionary system describing a crystal undergoing large-strain elasto-plastic deformations, where the plastic part of the deformation is driven directly by the movement of dislocations. This is joint work with T. Hudson (Warwick).

Thu, 23 Nov 2023
16:00
L5

Anticyclotomic p-adic L-functions for U(n) x U(n+1)  

Xenia Dimitrakopoulou
(University of Warwick)
Abstract

I will report on current work in progress on the construction of anticyclotomic p-adic L-functions for Rankin--Selberg products. I will explain how by p-adically interpolating the branching law for the spherical pair (U(n)xU(n+1), U(n)) we can construct a p-adic L-function attached to cohomological automorphic representations of U(n) x U(n+1), including anticyclotomic variation. Due to the recent proof of the unitary Gan--Gross--Prasad conjecture, this p-adic L-function interpolates the square root of the central L-value. Time allowing, I will explain how we can extend this result to the Coleman family of an automorphic representation.

Subscribe to University of Warwick