Thu, 21 May 2020

14:00 - 15:00

System Interpolation with Loewner Pencils: Background, Pseudospectra, and Nonlinear Eigenvalue Problems

Mark Embree
(Virginia Tech)
Abstract

In 2007, Andrew Mayo and Thanos Antoulas proposed a rational interpolation algorithm to solve a basic problem in control theory: given samples of the transfer function of a dynamical system, construct a linear time-invariant system that realizes these samples.  The resulting theory enables a wide range of data-driven modeling, and has seen diverse applications and extensions.  We will introduce these ideas from a numerical analyst's perspective, show how the selection of interpolation points can be guided by a Sylvester equation and pseudospectra of matrix pencils, and mention an application of these ideas to a contour algorithm for the nonlinear eigenvalue problem. (This talk involves collaborations with Michael Brennan (MIT), Serkan Gugercin (Virginia Tech), and Cosmin Ionita (MathWorks).)

[To be added to our seminars mailing list, or to receive a Zoom invitation for a particular seminar, please contact @email.]

Mon, 27 Apr 2020
15:00

Decomposition of 2d theories with 1-form symmetries

Eric Sharpe -- ZOOM SEMINAR
(Virginia Tech)
Abstract

In this talk, we will discuss two-dimensional theories with discrete

one-form symmetries, examples (which we have been studying

since 2005), their properties, and gauging of the one-form symmetry.

Their most important property is that such theories decompose into a

disjoint union of theories, recently deemed `universes.'

This decomposition has the effect of restricting allowed nonperturbative

sectors, in a fashion one might deem a `multiverse interference effect,'

which has had applications in topics including Gromov-Witten theory and

gauged linear sigma model phases.  After reviewing one-form symmetries

and decomposition in general, we will discuss a particular 

example in detail to explicitly illustrate these properties and 

to demonstrate how

gauging the one-form symmetry projects onto summands in the

decomposition.  If time permits, we will briefly review

analogous phenomena in four-dimensional theories with three-form symmetries,

as recently studied by Tanizaki and Unsal.

Thu, 16 Jun 2016

14:00 - 15:00
L5

Input-independent, optimal interpolatory model reduction: Moving from linear to nonlinear dynamics

Prof. Serkan Gugercin
(Virginia Tech)
Abstract

For linear dynamical systems, model reduction has achieved great success. In the case of linear dynamics,  we know how to construct, at a modest cost, (locally) optimalinput-independent reduced models; that is, reduced models that are uniformly good over all inputs having bounded energy. In addition, in some cases we can achieve this goal using only input/output data without a priori knowledge of internal  dynamics.  Even though model reduction has been successfully and effectively applied to nonlinear dynamical systems as well, in this setting,  bot the reduction process and the reduced models are input dependent and the high fidelity of the resulting approximation is generically restricted to the training input/data. In this talk, we will offer remedies to this situation.

 
First, we will  review  model reduction for linear systems by using rational interpolation as the underlying framework. The concept of transfer function will prove fundamental in this setting. Then, we will show how rational interpolation and transfer function concepts can be extended to nonlinear dynamics, specifically to bilinear systems and quadratic-in-state systems, allowing us to construct input-independent reduced models in this setting as well. Several numerical examples will be illustrated to support the discussion.
Thu, 02 Jun 2016

14:00 - 15:00
L5

CUR Matrix Factorizations: Algorithms, Analysis, Applications

Professor Mark Embree
(Virginia Tech)
Abstract
Interpolatory matrix factorizations provide alternatives to the singular value decomposition for obtaining low-rank approximations; this class includes the CUR factorization, where the C and R matrices are subsets of columns and rows of the target matrix.  While interpolatory approximations lack the SVD's optimality, their ingredients are easier to interpret than singular vectors: since they are copied from the matrix itself, they inherit the data's key properties (e.g., nonnegative/integer values, sparsity, etc.). We shall provide an overview of these approximate factorizations, describe how they can be analyzed using interpolatory projectors, and introduce a new method for their construction based on the
Discrete Empirical Interpolation Method (DEIM).  To conclude, we will use this algorithm to gain insight into accelerometer data from an instrumented building.  (This talk describes joint work with Dan Sorensen (Rice) and collaborators in Virginia Tech's Smart Infrastucture Lab.)
Mon, 15 Jun 2015

12:00 - 13:00
L5

Quiver Invariant, Abelianisation and Mutation

Seung-Joo Lee
(Virginia Tech)
Abstract

In this talk, gauged quiver quantum mechanics will be analysed for BPS state counting. Despite the wall-crossing phenomenon of those countings, an invariant quantity of quiver itself, dubbed quiver invariant, will be carefully defined for a certain class of abelian quiver theories. After that, to get a handle on nonabelian theories, I will overview the abelianisation and the mutation methods, and will illustrate some of their interesting features through a couple of simple examples.

Mon, 26 May 2014

12:00 - 13:00
L5

Geometric Constraints in Heterotic/F-theory Duality

Lara Anderson
(Virginia Tech)
Abstract
We systematically analyze a broad class of dual heterotic and F-theory models that give four-dimensional supergravity theories, and compare the geometric constraints on the two sides of the duality. In this talk I will show that F-theory gives new insight into the conditions under which heterotic vector bundles can be constructed. We show that in many cases the F-theory geometry imposes a constraint on the extent to which the gauge group can be enhanced, corresponding to limits on the way in which the heterotic bundle can decompose. We explicitly construct all dual F-theory/heterotic pairs in the class under consideration where the common twofold base surface is toric, and give both toric and non-toric examples of the general results. Finally, we provide evidence for important new aspects of G-flux in four-dimensional compactifications.
Wed, 20 Feb 2013

10:15 - 11:15
OCCAM Common Room (RI2.28)

Multiscale challenges and the hybrid method for stochastic simulation of biochemical systems

Yang Cao
(Virginia Tech)
Abstract

Complex systems emerging from many biochemical applications often exhibit multiscale and multiphysics (MSMP) features: The systems incorporate a variety of physical processes or subsystems across a broad range of scales. A typical MSMP system may come across scales with macroscopic, mesoscopic and microscopic kinetics,
deterministic and stochastic dynamics, continuous and discrete state space, fastscale and slow-scale reactions, and species of both large and small populations. These complex features present great challenges in the modeling and simulation practice. The goal of our research is to develop innovative computational methods and rigorous fundamental theories to answer these challenges. In this talk we will start with introduction of basic stochastic simulation algorithms for biochemical systems and multiscale
features in the stochastic cell cycle model of budding yeast. With detailed analysis of these multiscale features, we will introduce recent progress on simulation algorithms and computational theories for multiscale stochastic systems, including tau-leaping methods, slow-scale SSA, and the hybrid method. 

Thu, 04 Nov 2010

14:00 - 15:00
Gibson Grd floor SR

The Convergence Behaviour of BiCG

Prof. Eric de Sturler
(Virginia Tech)
Abstract

The Bi-Conjugate Gradient method (BiCG) is a well-known iterative solver (Krylov method) for linear systems of equations, proposed about 35 years ago, and the basis for some of the most successful iterative methods today, like BiCGSTAB. Nevertheless, the convergence behavior is poorly understood. The method satisfies a Petrov-Galerkin property, and hence its residual is constrained to a space of decreasing dimension (decreasing one per iteration). However, that does not explain why, for many problems, the method converges in, say, a hundred or a few hundred iterations for problems involving a hundred thousand or a million unknowns. For many problems, BiCG converges not much slower than an optimal method, like GMRES, even though the method does not satisfy any optimality properties. In fact, Anne Greenbaum showed that every three-term recurrence, for the first (n/2)+1 iterations (for a system of dimension n), is BiCG for some initial 'left' starting vector. So, why does the method work so well in most cases? We will introduce Krylov methods, discuss the convergence of optimal methods, describe the BiCG method, and provide an analysis of its convergence behavior.

Subscribe to Virginia Tech