Thu, 10 Jun 2021

16:45 - 17:30
Virtual

C* algebras and Geometric Group Theory

Cornelia Drutu
(University of Oxford)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

In this talk I will discuss a number of topics at the interface between C* algebras and Geometric Group Theory, with an emphasis on Kazhdan projections, various versions of amenability and their connection to the geometry of groups. This is based on joint work with P. Nowak and J. Mackay.

Thu, 10 Jun 2021

16:00 - 16:45
Virtual

Toeplitz quotient C*-algebras and ratio-limits for random walks

Adam Dor On
(University of Copenhagen)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

We showcase some newly emerging connections between the theory of random walks and operator algebras, obtained by associating concrete algebras of operators to random walks. The C*-algebras we obtain give rise to new and interesting notions of ratio limit space and boundary, which are computed by appealing to various works on the asymptotic behavior of transition probabilities for random walks. Our results are leveraged to shed light on a question of Viselter on symmetry-unique quotients of Toeplitz C*-algebras of subproduct systems arising from random walks.

Tue, 15 Jun 2021
10:00
Virtual

Three-Point Energy Correlator in N=4 Super Yang-Mills Theory

Kai Yan
(Max Planck Munich)
Abstract

Event shape observables describe how energy is distributed in the final state in scattering processes. Recent years have seen increasing interest from different physics areas in event shapes, in particular the energy correlators. They define a class of observable quantities which admit a simple and unified formulation in quantum  field theory.

Three-point energy correlators (EEEC) measure the energy flow through three detectors as a function of the three angles between them. We analytically compute the one-loop EEEC in maximally supersymmetric Yang-Mills theory. The result is a linear combination of logarithms and dilogarithms, decomposed onto a basis of single-valued transcendental functions. Its symbol contains 16 alphabet letters, revealing a dihedral symmetry of the three-point event shape.  Our results represent the first perturbative computation of a three-parameter event-shape observable, providing information on the function space at higher-loop order, and valuable input to the study of conformal light-ray OPE.

Tue, 15 Jun 2021

14:00 - 15:00
Virtual

A generative model for reciprocity and community detection in networks

Caterina De Bacco
(Max Planck Institute for Intelligent Systems)
Abstract

We present a probabilistic generative model and efficient algorithm to model reciprocity in directed networks. Unlike other methods that address this problem such as exponential random graphs, it assigns latent variables as community memberships to nodes and a reciprocity parameter to the whole network rather than fitting order statistics. It formalizes the assumption that a directed interaction is more likely to occur if an individual has already observed an interaction towards her. It provides a natural framework for relaxing the common assumption in network generative models of conditional independence between edges, and it can be used to perform inference tasks such as predicting the existence of an edge given the observation of an edge in the reverse direction. Inference is performed using an efficient expectation-maximization algorithm that exploits the sparsity of the network, leading to an efficient and scalable implementation. We illustrate these findings by analyzing synthetic and real data, including social networks, academic citations and the Erasmus student exchange program. Our method outperforms others in both predicting edges and generating networks that reflect the reciprocity values observed in real data, while at the same time inferring an underlying community structure. We provide an open-source implementation of the code online.

arXiv link: https://arxiv.org/abs/2012.08215

Tue, 22 Jun 2021
11:00
Virtual

90 minutes of CCC

Roger Penrose et al.
Abstract

This is a joint GR-QFT seminar, to celebrate in advance the 90th birthday of Roger Penrose later in the summer, comprising 9 talks on conformal cyclic cosmology.  The provisional schedule is as follows:

11:00 Roger Penrose (Oxford, UK) : The Initial Driving Forces Behind CCC

11:10 Paul Tod (Oxford, UK) : Questions for CCC

11:20 Vahe Gurzadyan (Yerevan, Armenia): CCC predictions and CMB

11:30 Krzysztof Meissner (Warsaw, Poland): Perfect fluids in CCC

11:40 Daniel An (SUNY, USA) : Finding information in the Cosmic Microwave Background data

11:50 Jörg Frauendiener (Otago, New Zealand) : Impulsive waves in de Sitter space and their impact on the present aeon

12:00 Pawel Nurowski (Warsaw, Poland and Guangdong Technion, China): Poincare-Einstein expansion and CCC

12:10 Luis Campusano (FCFM, Chile) : (Very) Large Quasar Groups

12:20 Roger Penrose (Oxford, UK) : What has CCC achieved; where can it go from here?

Thu, 17 Jun 2021
10:00
Virtual

Systolic Complexes and Group Presentations

Mireille Soergel
(Université de Bourgogne)
Abstract

We introduce the notion of systolic complexes and give conditions on presentations to construct such complexes using Cayley graphs.

We consider Garside groups to find examples of groups admitting such a presentation.
 

Thu, 10 Jun 2021
10:00
Virtual

Higher Fusion Categories described by Spaces

Thibault Decoppet
(University of Oxford)
Abstract

The goal of this talk is to present some elementary examples of fusion 2-categories whilst doing as little higher category theory as possible. More precisely, it turns out that up to a canonical completion operation, certain higher fusion categories are entirely described by their maximal subspaces. I will briefly motivate this completion operation in the 1-categorical case, and go on to explain why working with spaces is good enough in this particular case. Then, we will review some fact about $E_n$-algebras, and why they come into the picture. Finally, we will have a look at some small examples arising from finite groups.

Thu, 10 Jun 2021

16:00 - 17:00
Virtual

Refining Data-Driven Market Simulators and Managing their Risks

Blanka Horvath
(King's College London)
Further Information
Abstract

Techniques that address sequential data have been a central theme in machine learning research in the past years. More recently, such considerations have entered the field of finance-related ML applications in several areas where we face inherently path dependent problems: from (deep) pricing and hedging (of path-dependent options) to generative modelling of synthetic market data, which we refer to as market generation.

We revisit Deep Hedging from the perspective of the role of the data streams used for training and highlight how this perspective motivates the use of highly-accurate generative models for synthetic data generation. From this, we draw conclusions regarding the implications for risk management and model governance of these applications, in contrast to risk management in classical quantitative finance approaches.

Indeed, financial ML applications and their risk management heavily rely on a solid means of measuring and efficiently computing (similarity-)metrics between datasets consisting of sample paths of stochastic processes. Stochastic processes are at their core random variables with values on path space. However, while the distance between two (finite dimensional) distributions was historically well understood, the extension of this notion to the level of stochastic processes remained a challenge until recently. We discuss the effect of different choices of such metrics while revisiting some topics that are central to ML-augmented quantitative finance applications (such as the synthetic generation and the evaluation of similarity of data streams) from a regulatory (and model governance) perspective. Finally, we discuss the effect of considering refined metrics which respect and preserve the information structure (the filtration) of the market and the implications and relevance of such metrics on financial results.

Tue, 01 Jun 2021
15:30
Virtual

The Hypersimplex VS the Amplituhedron - Signs, Triangulations, Clusters and Eulerian Numbers

Matteo Parisi
(Oxford)
Abstract

In this talk I will discuss a striking duality, T-duality, we discovered between two seemingly unrelated objects: the hypersimplex and the m=2 amplituhedron. We draw novel connections between them and prove many new properties. We exploit T-duality to relate their triangulations and generalised triangles (maximal cells in a triangulation). We subdivide the amplituhedron into chambers as the hypersimplex can be subdivided into simplices - both enumerated by Eulerian numbers. Along the way, we prove several conjectures on the amplituhedron and find novel cluster-algebraic structures, e.g. a generalisation of cluster adjacency.

This is based on the joint work with Lauren Williams and Melissa Sherman-Bennett https://arxiv.org/abs/2104.08254.

Fri, 04 Jun 2021

14:00 - 15:00
Virtual

The orbital diameter of affine and diagonal groups

Kamilla Rekvényi
(Imperial College London)
Abstract

Let $G$ be a group acting transitively on a finite set $\Omega$. Then $G$ acts on $\Omega \times \Omega$ componentwise. Define the orbitals to be the orbits of $G$ on $\Omega \times \Omega$. The diagonal orbital is the orbital of the form $\Delta = \{(\alpha, \alpha) \mid \alpha \in \Omega \}$. The others are called non-diagonal orbitals. Let $\Gamma$ be a non-diagonal orbital. Define an orbital graph to be the non-directed graph with vertex set $\Omega$ and edge set $(\alpha,\beta) \in \Gamma$ with $\alpha, \beta \in \Omega$. If the action of $G$ on $\Omega$ is primitive, then all non-diagonal orbital graphs are connected. The orbital diameter of a primitive permutation group is the supremum of the diameters of its non-diagonal orbital graphs.

There has been a lot of interest in finding bounds on the orbital diameter of primitive permutation groups. In my talk I will outline some important background information and the progress made towards finding specific bounds on the orbital diameter. In particular, I will discuss some results on the orbital diameter of the groups of simple diagonal type and their connection to the covering number of finite simple groups. I will also discuss some results for affine groups, which provides a nice connection to the representation theory of quasisimple groups. 

Subscribe to Virtual