Mon, 31 May 2021

16:00 - 17:00
Virtual

Singularities and the Einstein equations: Inextendibility results for Lorentzian manifolds

Jan Sbierski
(Oxford)
Abstract

 Given a solution of the Einstein equations, a fundamental question is whether one can extend the solution or whether the solution is maximal. If the solution is inextendible in a certain regularity class due to the geometry becoming singular, a further question is whether the strength of the singularity is such that it terminates classical time-evolution. The latter question, as will be explained in the talk, is intimately tied to the strong cosmic censorship conjecture in general relativity which states in the language of partial differential equations that global uniqueness holds generically for the initial value problem for the Einstein equations. I will then focus in the talk on recent results showing the locally Lipschitz inextendibility of FLRW models with particle horizons and spherically symmetric weak null singularities. The latter in particular apply to the spherically symmetric spacetimes constructed by Luk and Oh, improving their C^2-formulation of strong cosmic censorship to a locally Lipschitz formulation.

Fri, 21 May 2021

14:00 - 15:00
Virtual

Short polynomials in polynomial ideals

Finn Wiersig
(University of Oxford)
Abstract

How to calculate the minimal number of summands of a nonzero polynomial in a given polynomial ideal? In this talk, we first discuss the roots of this question in computational algebra. Afterwards, we switch to the viewpoint of a commutative algebraist. In particular, we see that classical tools from this field, such as primary decomposition or the Castelnuovo–Mumford regularity, fail to provide a solution to this problem. Finally, we discuss a concrete example: A standard determinantal ideal generated by $t$-minors does not contain any polynomials with fewer than $t!/2$ terms.

Tue, 18 May 2021

14:00 - 15:00
Virtual

FFTA: Modularity maximisation for graphons

Florian Klimm
(Imperial College London)
Abstract

Networks are a widely-used tool to investigate the large-scale connectivity structure in complex systems and graphons have been proposed as an infinite size limit of dense networks. The detection of communities or other meso-scale structures is a prominent topic in network science as it allows the identification of functional building blocks in complex systems. When such building blocks may be present in graphons is an open question. In this paper, we define a graphon-modularity and demonstrate that it can be maximised to detect communities in graphons. We then investigate specific synthetic graphons and show that they may show a wide range of different community structures. We also reformulate the graphon-modularity maximisation as a continuous optimisation problem and so prove the optimal community structure or lack thereof for some graphons, something that is usually not possible for networks. Furthermore, we demonstrate that estimating a graphon from network data as an intermediate step can improve the detection of communities, in comparison with exclusively maximising the modularity of the network. While the choice of graphon-estimator may strongly influence the accord between the community structure of a network and its estimated graphon, we find that there is a substantial overlap if an appropriate estimator is used. Our study demonstrates that community detection for graphons is possible and may serve as a privacy-preserving way to cluster network data.

arXiv link: https://arxiv.org/abs/2101.00503

Fri, 21 May 2021
16:00
Virtual

Black hole microstate statistics from Euclidean wormholes

Jordan Cotler
(Harvard University)
Abstract

Over the last several years, it has been shown that black hole microstate level statistics in various models of 2D gravity are encoded in wormhole amplitudes.  These statistics quantitatively agree with predictions of random matrix theory for chaotic quantum systems; this behavior is realized since the 2D theories in question are dual to matrix models.  But what about black hole microstate statistics for Einstein gravity in 3D and higher spacetime dimensions, and ultimately in non-perturbative string theory?  We will discuss progress in these directions.  In 3D, we compute a wormhole amplitude that encodes the energy level statistics of BTZ black holes.  In 4D and higher, we find analogous wormholes which appear to encode the level statistics of small black holes just above threshold.  Finally, we study analogous Euclidean wormholes in the low-energy limit of type IIB string theory; we provide evidence that they encode the level statistics of small black holes just above threshold in AdS5 x S5.  Remarkably, these wormholes appear to be stable in appropriate regimes, and dominate over brane-anti-brane nucleation processes in the computation of black hole microstate statistics.

Fri, 14 May 2021
16:00
Virtual

Leaps and bounds towards scale separation

Bruno De Luca
(Stanford University)
Abstract

In a broad class of gravity theories, the equations of motion for vacuum compactifications give a curvature bound on the Ricci tensor minus a multiple of the Hessian of the warping function. Using results in so-called Bakry-Émery geometry, I will show how to put rigorous general bounds on the KK scale in gravity compactifications in terms of the reduced Planck mass or the internal diameter.
If time permits, I will reexamine in this light the local behavior in type IIA for the class of supersymmetric solutions most promising for scale separation. It turns out that the local O6-plane behavior cannot be smoothed out as in other local examples; it generically turns into a formal partially smeared O4.

Thu, 17 Jun 2021

14:00 - 15:00
Virtual

Wilson Loops, Cusps and Holography

Pietro Ferrero
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 10 Jun 2021

14:00 - 15:00
Virtual

Random Matrices and JT Gravity

Carmen Jorge-Diaz
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 03 Jun 2021

14:00 - 15:00
Virtual

Topological QFTs (Part II)

Marieke Van Beest and Sujay Nair
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 27 May 2021

14:00 - 15:00
Virtual

Topological QFTs (Part I)

Marieke Van Beest and Sujay Nair
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 20 May 2021

14:00 - 15:00
Virtual

Invariants of 4-Manifolds

Horia Magureanu
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Subscribe to Virtual