Thu, 10 Jun 2021
14:00
Virtual

53 Matrix Factorizations, generalized Cartan, and Random Matrix Theory

Alan Edelman
(MIT)
Further Information

Joint seminar with the Random Matrix Theory group

Abstract

An insightful exercise might be to ask what is the most important idea in linear algebra. Our first answer would not be eigenvalues or linearity, it would be “matrix factorizations.” We will discuss a blueprint to generate 53 inter-related matrix factorizations (times 2) most of which appear to be new. The underlying mathematics may be traced back to Cartan (1927), Harish-Chandra (1956), and Flensted-Jensen (1978) . We will discuss the interesting history. One anecdote is that Eugene Wigner (1968) discovered factorizations such as the SVD in passing in a way that was buried and only eight authors have referenced that work. Ironically Wigner referenced Sigurður Helgason (1962) but Wigner did not recognize his results in Helgason's book. This work also extends upon and completes open problems posed by Mackey² & Tisseur (2003/2005).

Classical results of Random Matrix Theory concern exact formulas from the Hermite, Laguerre, Jacobi, and Circular distributions. Following an insight from Freeman Dyson (1970), Zirnbauer (1996) and Duenez (2004/5) linked some of these classical ensembles to Cartan's theory of Symmetric Spaces. One troubling fact is that symmetric spaces alone do not cover all of the Jacobi ensembles. We present a completed theory based on the generalized Cartan distribution. Furthermore, we show how the matrix factorization obtained by the generalized Cartan decomposition G=K₁AK₂ plays a crucial role in sampling algorithms and the derivation of the joint probability density of A.

Joint work with Sungwoo Jeong

 

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 03 Jun 2021
14:00
Virtual

Distributing points by minimizing energy for constructing approximation formulas with variable transformation

Ken'ichiro Tanaka
(University of Tokyo)
Abstract


In this talk, we present some effective methods for distributing points for approximating analytic functions with prescribed decay on a strip region including the real axis. Such functions appear when we use numerical methods with variable transformations. Typical examples of such methods are provided by single-exponential (SE) or double-exponential (DE) sinc formulas, in which variable transformations yield single- or double-exponential decay of functions on the real axis. It has been known that the formulas are nearly optimal on a Hardy space with a single- or double-exponential weight on the strip region, which is regarded as a space of transformed functions by the variable transformations.

Recently, we have proposed new approximation formulas that outperform the sinc formulas. For constructing them, we use an expression of the error norm (a.k.a. worst-case error) of an n-point interpolation operator in the weighted Hardy space. The expression is closely related to potential theory, and optimal points for interpolation correspond to an equilibrium measure of an energy functional with an external field. Since a discrete version of the energy becomes convex in the points under a mild condition about the weight, we can obtain good points with a standard optimization technique. Furthermore, with the aid of the formulation with the energy, we can find approximate distributions of the points theoretically.

[References]
- K. Tanaka, T. Okayama, M. Sugihara: Potential theoretic approach to design of accurate formulas for function approximation in symmetric weighted Hardy spaces, IMA Journal of Numerical Analysis Vol. 37 (2017), pp. 861-904.

- K. Tanaka, M. Sugihara: Design of accurate formulas for approximating functions in weighted Hardy spaces by discrete energy minimization, IMA Journal of Numerical Analysis Vol. 39 (2019), pp. 1957-1984.

- S. Hayakawa, K. Tanaka: Convergence analysis of approximation formulas for analytic functions via duality for potential energy minimization, arXiv:1906.03133.

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Wed, 28 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 4 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 4: Further Topics and Directions (time permitting)

  • Regularity of solutions
  • Ergodicity
  • Pathwise approach to SPDE

 

Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: Suitable for OxPDE students, but also of interests to functional analysts, geometers, probabilists, numerical analysts and anyone who has a suitable level of prerequisite knowledge.

Tue, 27 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 3 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 3: Variational Approach to Parabolic SPDE

  • Itˆo’s formula in Hilbert spaces
  • Variational approach to monotone, coercive SPDE
  • Concrete examples
Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: The course is broadly aimed at graduate students with some knowledge of PDE theory and/or stochastic  analysis. Familiarity with measure theory and functional analysis will be useful.

Wed, 21 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 2 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 2: Variational Approach to Deterministic PDE

  • Variational approach to linear parabolic equations
  • Variational approaches to non-linear parabolic equations
Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: The course is broadly aimed at graduate students with some knowledge of PDE theory and/or stochastic  analysis. Familiarity with measure theory and functional analysis will be useful.

Tue, 20 Apr 2021

10:00 - 11:30
Virtual

Introduction to SPDEs from Probability and PDE - Lecture 1 of 4

Dr. Avi Mayorcas
(Former University of Oxford D. Phil. Student)
Further Information

Structure: 4 x 1.5hr Lectures 

Lecture 1:  Introduction and Preliminaries

  • Introduction to randomness in PDE
  • Stochastic analysis in infinite dimensions
Abstract

The course will aim to provide an introduction to stochastic PDEs from the classical perspective, that being a mixture of stochastic analysis and PDE analysis. We will focus in particular on the variational approach to semi-linear parabolic problems, `a  la  Lions. There will also be comments on  other models and approaches.

  Suggested Pre-requisites: The course is broadly aimed at graduate students with some knowledge of PDE theory and/or stochastic  analysis. Familiarity with measure theory and functional analysis will be useful.

Lecture 1:  Introduction and Preliminaries

  • Introduction to randomness in PDE
  • Stochastic analysis in infinite dimensions

Literature: [DKM+09, Hai09, Par07, PR07, DPZ14]

Lecture 2: Variational Approach to Deterministic PDE

  • Variational approach to linear parabolic equations
  • Variational approaches to non-linear parabolic equations

Literature: [Par07, Eva10]

Lecture 3: Variational Approach to Parabolic SPDE

  • Itˆo’s formula in Hilbert spaces
  • Variational approach to monotone, coercive SPDE
  • Concrete examples

Literature: [PR07, Par07]

Lecture 4: Further Topics and Directions (time permitting)

  • Regularity of solutions
  • Ergodicity
  • Pathwise approach to SPDE

Literature: [Hai09, DKM+09, DPZ96, Hai14, GIP15]

References

[DKM+09] Robert Dalang, Davar Khoshnevisan, Carl Mueller, David Nualart, and Yimin Xiao. A minicourse on stochastic partial differential equations, vol- ume 1962 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009.

[DPZ96] G. Da Prato and J. Zabczyk. Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Note Series. Cambridge University Press, 1996.

[DPZ14] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 2014.

[Eva10] Lawrence Craig Evans. Partial Differential Equations. American Mathe- matical Society, 2010.

[GIP15] Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski. Paracon- trolled distributions and singular PDEs. Forum Math. Pi, 3:75, 2015.

[Hai09]  Martin Hairer.  An Introduction to Stochastic PDEs.  Technical  report, The University of Warwick / Courant Institute, 2009. Available at: http://hairer.org/notes/SPDEs.pdf

[Hai14] M. Hairer. A theory of regularity structures. Inventiones mathematicae, 198(2):269–504, 2014.

[Par07] Etienne  Pardoux. Stochastic  partial  differential  equations.  https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.405.4805&rep=rep1&type=pdf  2007.

[PR07] Claudia Pr´evˆot and Michael R¨ockner. A concise course on stochastic partial differential equations. Springer, 2007.

Mon, 01 Mar 2021
12:45
Virtual

NO SEMINAR

NO SEMINAR
Thu, 25 Feb 2021
17:00
Virtual

A Partial Result on Zilber's Restricted Trichotomy Conjecture

Benjamin Castle
(University of California Berkeley)
Abstract

Zilber's Restricted Trichotomy Conjecture predicts that every sufficiently rich strongly minimal structure which can be interpreted from an algebraically closed field K, must itself interpret K. Progress toward this conjecture began in 1993 with the work of Rabinovich, and recently Hasson and Sustretov gave a full proof for structures with universe of dimension 1. In this talk I will discuss a partial result in characteristic zero for universes of dimension greater than 1: namely, the conjecture holds in this case under certain geometric restrictions on definable sets. Time permitting, I will discuss how this result implies the full conjecture for expansions of abelian varieties.

Tue, 23 Feb 2021
12:00
Virtual

Twistors, integrability, and 4d Chern-Simons theory

Roland Bittleston
(Cambridge DAMTP)
Abstract

I will connect approaches to classical integrable systems via 4d Chern-Simons theory and via symmetry reductions of the anti-self-dual Yang-Mills equations. In particular, I will consider holomorphic Chern-Simons theory on twistor space, defined using a range of meromorphic (3,0)-forms. On shell these are, in most cases, found to agree with actions for anti-self-dual Yang-Mills theory on space-time. Under symmetry reduction, these space-time actions yield actions for 2d integrable systems. On the other hand, performing the symmetry reduction directly on twistor space reduces the holomorphic Chern-Simons action to 4d Chern-Simons theory.

Subscribe to Virtual