Mon, 18 Oct 2021

16:00 - 17:00
C1
Mon, 11 Oct 2021

16:00 - 17:00
C1

Computing p-adic L-functions of Hecke characters

Håvard Damm-Johnsen
(Oxford)
Abstract

In 1973, Serre defined $p$-adic modular forms as limits of modular forms, and constructed the Leopoldt-Kubota $L$-function as the constant term of a limit of Eisenstein series. This was extended by Deligne-Ribet to totally real number fields, and Lauder and Vonk have developed an algorithm for interpolating $p$-adic $L$-functions of such fields using Serre's idea. We explain what an $L$-function is and why you should care, and then move on to giving an overview of the algorithm, extensions, and applications.

Thu, 28 Oct 2021

12:00 - 13:00
C1

Symmetry breaking and pattern formation for local/nonlocal interaction functionals

Sara Daneri
(Gran Sasso Science Institute GSSI)
Abstract

In this talk I will review some recent results obtained in collaboration with E. Runa and A. Kerschbaum on the one-dimensionality of the minimizers
of a family of continuous local/nonlocal interaction functionals in general dimension. Such functionals have a local term, typically the perimeter or its Modica-Mortola approximation, which penalizes interfaces, and a nonlocal term favouring oscillations which are high in frequency and in amplitude. The competition between the two terms is expected by experiments and simulations to give rise to periodic patterns at equilibrium. Functionals of this type are used  to model pattern formation, either in material science or in biology. The difficulty in proving the emergence of such structures is due to the fact that the functionals are symmetric with respect to permutation of coordinates, while in more than one space dimensions minimizers are one-dimesnional, thus losing the symmetry property of the functionals. We will present new techniques and results showing that for two classes of functionals (used to model generalized anti-ferromagnetic systems, respectively  colloidal suspensions), both in sharp interface and in diffuse interface models, minimizers are one-dimensional and periodic, in general dimension and also while imposing a nontrivial volume constraint.

Tue, 16 Jun 2020

12:00 - 13:00
C1

TBA

Michal Gnacik
(University of Portsmouth)
Tue, 17 Mar 2020

12:00 - 13:00
C1

Nestedness in bipartite networks

Matteo Bruno
(IMT Lucca)
Abstract

Many real networks feature the property of nestedness, i.e. the neighbours of nodes with a few connections are hierarchically nested within the neighbours of nodes with more connections. Despite the abstract simplicity of this notion, different mathematical definitions of nestedness have been proposed, sometimes giving contrasting results. Moreover, there is an ongoing debate on the statistical significance of nestedness, since even random networks where the number of connections (degree) of each node is fixed to its empirical value are typically as nested as real-world ones. In this talk we show unexpected effects due to the recent finding that random networks where the degrees are enforced as hard constraints (microcanonical ensembles) are thermodynamically different from random networks where the degrees are enforced as soft constraints (canonical ensembles). We show that if the real network is perfectly nested, then the two ensembles are trivially equivalent and the observed nestedness, independently of its definition, is indeed an unavoidable consequence of the empirical degrees. On the other hand, if the real network is not perfectly nested, then the two ensembles are not equivalent and alternative definitions of nestedness can be even positively correlated in the canonical ensemble and negatively correlated in the microcanonical one. This result disentangles distinct notions of nestedness captured by different metrics and highlights the importance of making a principled choice between hard and soft constraints in null models of ecological networks.

[1] Bruno, M., Saracco, F., Garlaschelli, D., Tessone, C. J., & Caldarelli, G. (2020). Nested mess: thermodynamics disentangles conflicting notions of nestedness in ecological networks. arXiv preprint arXiv:2001.11805.
 

Tue, 28 Apr 2020

12:00 - 13:00
C1

Atomic structures and the statistical mechanics of networks

Anatol Wegner
(University College London)
Abstract

We consider random graph models where graphs are generated by connecting not only pairs of nodes by edges but also larger subsets of
nodes by copies of small atomic subgraphs of arbitrary topology. More specifically we consider canonical and microcanonical ensembles
corresponding to constraints placed on the counts and distributions of atomic subgraphs and derive general expressions for the entropy of such
models. We also introduce a procedure that enables the distributions of multiple atomic subgraphs to be combined resulting in more coarse
grained models. As a result we obtain a general class of models that can be parametrized in terms of basic building blocks and their
distributions that includes many widely used models as special cases. These models include random graphs with arbitrary distributions of subgraphs (Karrer & Newman PRE 2010, Bollobas et al. RSA 2011), random hypergraphs, bipartite models, stochastic block models, models of multilayer networks and their degree corrected and directed versions. We show that the entropy expressions for all these models can be derived from a single expression that is characterized by the symmetry groups of their atomic subgraphs.

Mon, 10 Feb 2020

16:00 - 17:00
C1

Periods and the motivic Galois group

Deepak Kamlesh
(Oxford)
Abstract

A long time ago, Grothendieck made some conjectures. This has resulted in some things.

Tue, 18 Feb 2020

12:00 - 13:00
C1

Can we have null models of real networks? Maximum Entropy Random Loopy Graphs

Fabián Aguirre-López
(King's College London)
Abstract

Real networks are highly clustered (large number of short cycles) in contrast with their random counterparts. The Erdős–Rényi model and the Configuration model will generate networks with a tree like structure, a feature rarely observed in real networks. This means that traditional random networks are a poor choice as null models for real networks. Can we do better than that? Maximum entropy random graph ensembles are the natural choice to generate such networks. By introducing a bias with respect to the number of short cycles in a degree constrained graph, we aim to get a random graph model with a tuneable number of short cycles [1,2]. Nevertheless, the story is not so simple. In the same way random unclustered graphs present undesired topology, highly clustered ones will do as well if one is not careful with the scaling of the control parameters relative to the system size. Additionally the techniques to generate and sample numerically from general biased degree constrained graph ensembles will also be discussed. The topological transition has an important impact on the computational cost to sample graphs from these ensembles. To take it one step further, a general approach using the eigenvalues of the adjacency matrix rather than just the number of short cycles will also be presented, [2].

[1] López, Fabián Aguirre, et al. "Exactly solvable random graph ensemble with extensively many short cycles." Journal of Physics A: Mathematical and Theoretical 51.8 (2018): 085101.
[2] López, Fabián Aguirre, and Anthony CC Coolen. "Imaginary replica analysis of loopy regular random graphs." Journal of Physics A: Mathematical and Theoretical 53.6 (2020): 065002.

Mon, 03 Feb 2020

16:00 - 17:00
C1

A Recipe for Reciprocity

Jay Swar
Abstract

Gauss noted quadratic reciprocity to be among his favourite results, and any undergrad will quickly pick up on just how strange it is despite a plethora of elementary proofs. By 1930, E. Artin had finalized Artin reciprocity which wondrously subsumed all previous generalizations, but was still confined to abelian contexts. An amicable non-abelian reciprocity remains a driving force in number-theoretic research.

In this talk, I'll recount Artin reciprocity and show it implies quadratic and cubic reciprocity. I'll then talk about some candidate non-abelian reciprocities, and in particular, which morals of Artin reciprocity they preserve.

Subscribe to C1