Tue, 25 Feb 2020

16:00 - 17:00
C1

Functional calculus for analytic Besov functions

Charles Batty
(Oxford)
Abstract

There is a class $\mathcal{B}$ of analytic Besov functions on a half-plane, with a very simple description.   This talk will describe a bounded functional calculus $f \in \mathcal{B} \mapsto f(A)$ where $-A$ is the generator of either a bounded $C_0$-semigroup on Hilbert space or a bounded analytic semigroup on a Banach space.    This calculus captures many known results for such operators in a unified way, and sometimes improves them.   A discrete version of the functional calculus was shown by Peller in 1983.

Wed, 12 Feb 2020
16:00
C1

Generalising Mirzakhani’s curve counting result

Nick Bell
(University of Bristol)
Abstract

On any hyperbolic surface, the number of curves of length at most L is finite. However, it is not immediately clear how quickly this number grows with L. We will discuss Mirzakhani’s breakthrough result regarding the asymptotic behaviour of this number, along with recent efforts to generalise her result using currents.

Wed, 19 Feb 2020
16:00
C1

Limit Groups and Real Trees

Jonathan Fruchter
(University of Oxford)
Abstract

Limit groups are a powerful tool in the study of free and hyperbolic groups (and even broader classes of groups). I will define limit groups in various ways: algebraic, logical and topological, and draw connections between the different definitions. We will also see how one can equip a limit group with an action on a real tree, and analyze this action using the Rips machine, a generalization of Bass-Serre theory to real trees. As a conclusion, we will obtain that hyperbolic groups whose outer automorphism group is infinite, split non-trivially as graphs of groups.

Wed, 04 Mar 2020
16:00
C1

Automorphisms of free groups and train tracks

Monika Kudlinska
(University of Bristol)
Abstract


 Let phi be an outer automorphism of a free group. A topological representative of phi is a marked graph G along with a homotopy equivalence f: G → G which induces the outer automorphism phi on the fundamental group of G. For any given outer automorphism, the choice of topological representative is far from unique. Handel and Bestvina showed that sufficiently nice automorphisms admit a special type of topological representative called a train track map, whose dynamics can be well understood. 
In this talk I will outline the definition and motivation for train tracks, and give a sketch of Handel and Bestvina’s algorithm for finding them.
 

Tue, 04 Feb 2020

12:00 - 13:00
C1

Adaptive biological networks

Mark Fricker and Carlos Aguilar
(Department of Plant Sciences and Freie Universität Berlin)
Abstract

Can spatial fungal networks be informative for both ecology and network science?

Filamentous organisms grow as adaptive biological spatial networks. These networks are in a continuous balance of two main forces: exploration of the habitat to acquire scarce resources, and the transport of those resources within the developing network. In addition, the construction of the network has to be kept a low cost while taking into account the risk of damage by predation. Such network optimization is not unique to biological systems, but is relevant to transport networks across many domains. Thus, this collaborative project between FU-Berlin and University of Oxford represents the beginning of a research program that aims at: First, setting up protocols for the use of network analysis to characterize spatial networks formed by both macroscopic and microscopic filamentous organisms (e.g. Fungi), and determining the fitness and ecological consequences of different structure of the networks. Second, extracting biologically-inspired algorithms that lead to optimized network formation in fungi and discuss their utility in other network domains. This information is critical to demonstrate that we have a viable and scalable pipeline for the measurement of such properties as well provide preliminary evidence of the usefulness of studying network properties of fungi.

Mon, 27 Jan 2020

16:00 - 17:00
C1

The Class Field Tower Problem

Wojtek Wawrów
(Oxford)
Abstract

Given a number field K, it is natural to ask whether it has a finite extension with ideal class number one. This question can be translated into a fundamental question in class field theory, namely the class field tower problem. In this talk, we are going to discuss this problem as well as its solution due to Golod and Shafarevich using methods of group cohomology.
 

Wed, 11 Mar 2020
16:00
C1

Horocyclic product of Gromov hyperbolic spaces.

Tom Ferragut
(Université de Montpellier)
Abstract

Gromov hyperbolicity is a property to metric spaces that generalises the notion of negative curvature for manifolds.
After an introduction about these spaces, we will explain the construction of horocyclic products related to lamplighter groups, Baumslag solitar groups and the Sol geometry.
We will describe the shape of geodesics in them, and present rigidity results on their quasi-isometries due to Farb, Mosher, Eskin, Fisher and Whyte.

Wed, 05 Feb 2020
16:00
C1

Subgroups of direct products of right-angled Artin groups.

Jone Lopez de Gamiz
(University of Warwick)
Abstract

Right-angled Artin groups (RAAGs) were first introduced in the 70s by Baudisch and further developed in the 80s by Droms.
They have attracted much attention in Geometric Group Theory. One of the many reasons is that it has been shown that all hyperbolic 3-manifold groups are virtually finitely presented subgroups of RAAGs.
In the first part of the talk, I will discuss some of their interesting properties. I will explain some of their relations with manifold groups and their importance in finiteness conditions for groups.
In the second part, I will focus on my PhD project concerning subgroups of direct products of RAAGs.

Wed, 29 Jan 2020
16:00
C1

Aut(T) has trivial outer automorphism group

Ido Grayevsky
(Oxford University)
Abstract


The automorphism group of a d-regular tree is a topological group with many interesting features. A nice thing about this group is that while some of its features are highly non-trivial (e.g., the existence of infinitely many pairwise non-conjugate simple subgroups), often the ideas involved in the proofs are fairly intuitive and geometric. 
I will present a proof for the fact that the outer automorphism group of (Aut(T)) is trivial. This is original joint work with Gil Goffer, but as is often the case in this area, was already proven by Bass-Lubotzky 20 years ago. I will mainly use this talk to hint at how algebra, topology and geometry all play a role when working with Aut(T).
 

Wed, 22 Jan 2020
16:00
C1

Whitehead graphs in free groups

Ric Wade
(Oxford University)
Abstract

Whitehead published two papers in 1936 on free groups. Both concerned decision problems for equivalence of (sets of) elements under automorphisms. The first focused on primitive elements (those that appear in some basis), the second looked at arbitrary sets of elements. While both of the resulting algorithms are combinatorial, Whitehead's proofs that these algorithms actually work involve some nice manipulation of surfaces in 3-manifolds. We will have a look at how this works for primitive elements. I'll outline some generalizations due to Culler-Vogtmann, Gertsen, and Stallings, and if we have time talk about how it fits in with some of my current work.

Subscribe to C1