Research group
Combinatorics
Tue, 05 Nov 2024

14:00 - 15:00
L4

Rainbow Hamilton cycles

Julia Böttcher
(London School of Economics)
Abstract

In a graph $H$ whose edges are coloured (not necessarily properly) a rainbow copy of a graph $G$ is a (not necessarily induced) subgraph of $H$ that is isomorphic to $G$ and whose edges are all coloured differently. In this talk I will explain why the problem of finding such rainbow copies is interesting, survey what we know, concentrating mainly on the case where $G$ is a Hamilton cycle, and then tell you a bit about a new result about finding rainbow Hamilton cycles resiliently in random graphs (which is joint work with Peter Allen and Liana Yepremyan).

Tue, 29 Oct 2024

14:00 - 15:00
L4

Lower tails for triangle counts in the critical window

Matthew Jenssen
(King's College London)
Abstract

The classical lower-tail problem for triangles in random graphs asks the following: given $\eta\in[0,1)$, what is the probability that $G(n,p)$ contains at most $\eta$ times the expected number of triangles?  When $p=o(n^{-1/2})$ or $p = \omega(n^{-1/2})$ the asymptotics of the logarithm of this probability are known via Janson's inequality in the former case and regularity or container methods in the latter case.

We prove for the first time asymptotic formulas for the logarithm of the lower tail probability when $p=c n^{-1/2}$ for $c$ constant.  Our results apply for all $c$ when $\eta \ge 1/2$ and for $c$  small enough when $\eta < 1/2$.  For the special case $\eta=0$ of triangle-freeness, our results prove that a phase transition occurs as $c$ varies (in the sense of a non-analyticity of the rate function), while for $\eta \ge 1/2$ we prove that no phase transition occurs.

Our method involves ingredients from algorithms and statistical physics including rapid mixing of Markov chains and the cluster expansion.  We complement our asymptotic formulas with efficient algorithms to approximately sample from $G(n,p)$ conditioned on the lower tail event.

Joint work with Will Perkins, Aditya Potukuchi and Michael Simkin.

Tue, 22 Oct 2024

14:00 - 15:00
L4

Exponential Improvement for Multicolour Ramsey

Eoin Hurley
(University of Oxford)
Abstract

We give an exponential improvement on the upper bound for the $r$-colour diagonal Ramsey number for all $r$. The proof relies on geometric insights and offers a simplified proof in the case of $r=2$.

Joint Work with: Paul Ballister, Béla Bollobás, Marcelo Campos, Simon Griffiths, Rob Morris, Julian Sahasrabudhe and Marius Tiba.

Tue, 15 Oct 2024

14:00 - 15:00
L4

Spanning spheres in Dirac hypergraphs

Alp Müyesser
(University of Oxford)
Abstract

We show that an $n$-vertex $k$-uniform hypergraph, where all $(k-1)$-subsets that are supported by an edge are in fact supported by at least $n/2+o(n)$ edges, contains a spanning $(k-1)$-dimensional sphere. This generalises Dirac's theorem, and confirms a conjecture of Georgakopoulos, Haslegrave, Montgomery, and Narayanan. Unlike typical results in the area, our proof does not rely on the absorption method or the regularity lemma. Instead, we use a recently introduced framework that is based on covering the vertex set of the host hypergraph with a family of complete blow-ups.

This is joint work with Freddie Illingworth, Richard Lang, Olaf Parczyk, and Amedeo Sgueglia.

Tue, 04 Jun 2024

15:30 - 16:30
Online

Recent progress in Ramsey Theory

Jacques Verstraete
(University of California, San Diego)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The organizing principle of Ramsey theory is that in large mathematical structures, there are relatively large substructures which are homogeneous. This is quantified in combinatorics by the notion of Ramsey numbers $r(s,t)$, which denote the minimum $N$ such that in any red-blue coloring of the edges of the complete graph on $N$ vertices, there exists a red complete graph on $s$ vertices or a blue complete graph on $t$ vertices.

While the study of Ramsey numbers goes back almost one hundred years, to early papers of Ramsey and Erdős and Szekeres, the long-standing conjecture of Erdős that $r(s,t)$ has order of magnitude close to $t^{s-1}$ as $t \to \infty$ remains open in general. It took roughly sixty years before the order of magnitude of $r(3,t)$ was determined by Jeong Han Kim, who showed $r(3,t)$ has order of magnitude $t^2/\log t$ as $t \to \infty$. In this talk, we discuss a variety of new techniques, including the modern method of containers, which lead to a proof of the conjecture of Erdős that $r(4,t)$ is of order close to $t^3$.

One of the salient philosophies in our approach is that good Ramsey graphs hide inside pseudorandom graphs, and the long-standing emphasis of tackling Ramsey theory from the point of view of purely random graphs is superseded by pseudorandom graphs. Via these methods, we also come close to determining the well-studied related quantities known as Erdős-Rogers functions and discuss related hypergraph coloring problems and applications.

Joint work in part with Sam Mattheus, Dhruv Mubayi and David Conlon.

Tue, 04 Jun 2024

14:00 - 15:00
Online

Living discreetly but thinking continuously: Dynamic networks and stochastic approximation

Shankar Bhamidi
(University of North Carolina at Chapel Hill)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Models for networks that evolve and change over time are ubiquitous in a host of domains including modeling social networks, understanding the evolution of systems in proteomics, the study of the growth and spread of epidemics etc.

This talk will give a brief summary of three recent findings in this area where stochastic approximation techniques play an important role:

  1. Understanding the effect and detectability of change point in the evolution of the system dynamics.
  2. Reconstructing the initial "seed" that gave rise to the current network, sometimes referred to as Network Archeology.
  3. The disparity in the behavior of different centrality measures such as degree and page rank centrality for measuring popularity in settings where there are vertices of different types such as majorities and minorities as well as insight analyzing such problems give for at first sight unrelated issues such as sampling rare groups within the network.

The main goal will to be convey unexpected findings in each of these three areas and in particular the "unreasonable effectiveness" of continuous time branching processes.

Thu, 13 Jun 2024

14:00 - 15:00
L5

Incidence bounds via extremal graph theory

Benny Sudakov
(ETH Zurich)
Abstract

The study of counting point-hyperplane incidences in the $d$-dimensional space was initiated in the 1990's by Chazelle and became one of the central problems in discrete geometry. It has interesting connections to many other topics, such as additive combinatorics and theoretical computer science. Assuming a standard non-degeneracy condition, i.e., that no $s$ points are contained in the intersection of $s$ hyperplanes, the currently best known upper bound on the number of incidences of $m$ points and $n$ hyperplanes in $\mathbb{R}^d$ is $O((mn)^{1-1/(d+1)}+m+n)$. This bound by Apfelbaum and Sharir is based on geometrical space partitioning techniques, which apply only over the real numbers.

In this talk, we discuss a novel combinatorial approach to study such incidence problems over arbitrary fields. Perhaps surprisingly, this approach matches the best known bounds for point-hyperplane incidences in $\mathbb{R}^d$ for many interesting values of $m, n, d$. Moreover, in finite fields our bounds are sharp as a function of $m$ and $n$ in every dimension. This approach can also be used to study point-variety incidences and unit-distance problem in finite fields, giving tight bounds for both problems under a similar non-degeneracy assumption. Joint work with A. Milojevic and I. Tomon.

Tue, 07 May 2024

14:00 - 15:00
Online

Random triangulations of surfaces, and the high-genus regime

Guillaume Chapuy
(Institut de Recherche en Informatique Fondamentale)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will talk about the behaviour of random maps on surfaces (for example, random triangulations) of given genus, when their size tends to infinity. Such questions can be asked from the viewpoint of the local behaviour (Benjamini-Schramm convergence) or global behaviour (diameter, Gromov Hausdorff convergence), and in both cases, much combinatorics is involved. I will survey the landmark results for the case of fixed genus, and state very recent results in which we manage to address the "high genus" regime, when the genus grows proportionally to the size – for this regime we establish isoperimetric inequalities and prove the long-suspected fact that the diameter is logarithmic with high probability.

Based on joint work with Thomas Budzinski and Baptiste Louf.

Tue, 07 May 2024

15:30 - 16:30
Online

Coboundary expansion and applications

Irit Dinur
(Weizmann Institute of Science)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Coboundary expansion is a notion introduced by Linial and Meshulam, and by Gromov that combines combinatorics topology and linear algebra. Kaufman and Lubotzky observed its relation to "Property testing", and in recent years it has found several applications in theoretical computer science, including for error correcting codes (both classical and quantum), for PCP agreement tests, and even for studying polarization in social networks.

In the talk I will introduce this notion and some of its applications. No prior knowledge is assumed, of course.

Tue, 21 May 2024

10:30 - 17:30
L3

One-Day Meeting in Combinatorics

Multiple
Further Information

The speakers are Carla Groenland (Delft), Shoham Letzter (UCL), Nati Linial (Hebrew University of Jerusalem), Piotr Micek (Jagiellonian University), and Gabor Tardos (Renyi Institute). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Subscribe to Combinatorial Theory Seminar