Thu, 23 Feb 2023

14:00 - 15:00
Lecture Room 3

The Bernstein-Gelfand-Gelfand machinery and applications

Kaibo Hu
Abstract

In this talk, we first review the de Rham complex and the finite element exterior calculus, a cohomological framework for structure-preserving discretisation of PDEs. From de Rham complexes, we derive other complexes with applications in elasticity, geometry and general relativity. The derivation, inspired by the Bernstein-Gelfand-Gelfand (BGG) construction, also provides a general machinery to establish results for tensor-valued problems (e.g., elasticity) from de Rham complexes (e.g., electromagnetism and fluid mechanics). We discuss some applications and progress in this direction, including mechanics models and the construction of bounded homotopy operators (Poincaré integrals) and finite elements.

 

Thu, 09 Mar 2023

14:00 - 15:00
Lecture Room 3

Supersmoothness of multivariate splines

Michael Floater
Abstract

Polynomial splines over simplicial meshes in R^n (triangulations in 2D, tetrahedral meshes in 3D, and so on) sometimes have extra orders of smoothness at a vertex. This property is known as supersmoothness, and plays a role both in the construction of macroelements and in the finite element method.
Supersmoothness depends both on the number of simplices that meet at the vertex and their geometric configuration.

In this talk we review what is known about supersmoothness of polynomial splines and then discuss the more general setting of splines whose individual pieces are any infinitely smooth functions.

This is joint work with Kaibo Hu.

 

Thu, 27 Apr 2023

14:00 - 15:00
(This talk is hosted by Rutherford Appleton Laboratory)

All-at-once preconditioners for ocean data assimilation

Jemima Tabeart
(University of Oxford)
Abstract

Correlation operators are used in data assimilation algorithms
to weight the contribution of prior and observation information.
Efficient implementation of these operators is therefore crucial for
operational implementations. Diffusion-based correlation operators are popular in ocean data assimilation, but can require a large number of serial matrix-vector products. An all-at-once formulation removes this requirement, and offers the opportunity to exploit modern computer architectures. High quality preconditioners for the all-at-once approach are well-known, but impossible to apply in practice for the
high-dimensional problems that occur in oceanography. In this talk we
consider a nested preconditioning approach which retains many of the
beneficial properties of the ideal analytic preconditioner while
remaining affordable in terms of memory and computational resource.

Wed, 23 Feb 2022
14:00

TBA

Jemima Tabeart
Abstract

TBA

Thu, 02 Feb 2023
14:00
Rutherford Appleton Laboratory, nr Didcot

Reducing CO2 emissions for aircraft flights through complex wind fields using three different optimal control approaches

Cathie Wells
(University of Reading)
Abstract

Whilst we all enjoy travelling to exciting and far-off locations, the current climate crisis is making flights less and less attractive. But is there anything we can do about this? By plotting courses that make best use of atmospheric data to minimise aircraft fuel burn, airlines can not only save money on fuel, but also reduce emissions, whilst not significantly increasing flight times. In each case the route between London Heathrow Airport and John F Kennedy Airport in New York is considered.  Atmospheric data is taken from a re-analysis dataset based on daily averages from 1st December, 2019 to 29th February, 2020.

Initially Pontryagin’s minimum principle is used to find time minimal routes between the airports and these are compared with flight times along the organised track structure routes prepared by the air navigation service providers NATS and NAV CANADA for each day.  Efficiency of tracks is measured using air distance, revealing that potential savings of between 0.7% and 16.4% can be made depending on the track flown. This amounts to a reduction of 6.7 million kg of CO2 across the whole winter period considered.

In a second formulation, fixed time flights are considered, thus reducing landing delays.  Here a direct method involving a reduced gradient approach is applied to find fuel minimal flight routes either by controlling just heading angle or both heading angle and airspeed. By comparing fuel burn for each of these scenarios, the importance of airspeed in the control formulation is established.  

Finally dynamic programming is applied to the problem to minimise fuel use and the resulting flight routes are compared with those actually flown by 9 different models of aircraft during the winter of 2019 to 2020. Results show that savings of 4.6% can be made flying east and 3.9% flying west, amounting to 16.6 million kg of CO2 savings in total.

Thus large reductions in fuel consumption and emissions are possible immediately, by planning time or fuel minimal trajectories, without waiting decades for incremental improvements in fuel-efficiency through technological advances.
 

Thu, 16 Feb 2023

14:00 - 15:00
Lecture Room 3

Accuracy controlled schemes for the eigenvalue problem of the neutron transport equation

Olga Mula
(TU Eindhoven)
Abstract

The neutron transport equation is a linear Boltzmann-type PDE that models radiative transfer processes, and fission nuclear reactions. The computation of the largest eigenvalue of this Boltzmann operator is crucial in nuclear safety studies but it has classically been formulated only at a discretized level, so the predictive capabilities of such computations are fairly limited. In this talk, I will give an overview of the modeling for this equation, as well as recent analysis that leads to an infinite dimensional formulation of the eigenvalue problem. We leverage this point of view to build a numerical scheme that comes with a rigorous, a posteriori estimation of the error between the exact, infinite-dimensional solution, and the computed one.

Thu, 09 Feb 2023

14:00 - 15:00
Lecture Room 3

Toward nonlinear multigrid for nonlinear variational inequalities

Ed Bueler
(University of Alaska Fairbanks)
Abstract

I will start with two very brief surveys.  First is a class of problems, namely variational inequalities (VIs), which generalize PDE problems, and second is a class of solver algorithms, namely full approximation storage (FAS) nonlinear multigrid for PDEs.  Motivation for applying FAS to VIs is demonstrated in the standard mathematical model for glacier surface evolution, a very general VI problem relevant to climate modeling.  (Residuals for this nonlinear and non-local VI problem are computed by solving a Stokes model.)  Some existing nonlinear multilevel VI schemes, based on global (Newton) linearization would seem to be less suited to such general VI problems.  From this context I will sketch some work-in-progress toward the scalable solutions of nonlinear and nonlocal VIs by an FAS-type multilevel method.

Thu, 27 Oct 2022

14:00 - 15:00
Zoom

Domain decomposition training strategies for physics-informed neural networks [talk hosted by Rutherford Appleton Lab]

Victorita Dolean
(University of Strathclyde)
Abstract

Physics-informed neural networks (PINNs) [2] are a solution method for solving boundary value problems based on differential equations (PDEs). The key idea of PINNs is to incorporate the residual of the PDE as well as boundary conditions into the loss function of the neural network. This provides a simple and mesh-free approach for solving problems relating to PDEs. However, a key limitation of PINNs is their lack of accuracy and efficiency when solving problems with larger domains and more complex, multi-scale solutions. 


In a more recent approach, Finite Basis Physics-Informed Neural Networks (FBPINNs) [1], the authors use ideas from domain decomposition to accelerate the learning process of PINNs and improve their accuracy in this setting. In this talk, we show how Schwarz-like additive, multiplicative, and hybrid iteration methods for training FBPINNs can be developed. Furthermore, we will present numerical experiments on the influence on convergence and accuracy of these different variants. 

This is joint work with Alexander Heinlein (Delft) and Benjamin Moseley (Oxford).


References 
1.    [1]  B. Moseley, A. Markham, and T. Nissen-Meyer. Finite basis physics- informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations. arXiv:2107.07871, 2021. 
2.    [2]  M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

Thu, 20 Oct 2022

14:00 - 15:00
L3

Twenty examples of AAA approximation

Nick Trefethen
(University of Oxford)
Abstract

For the first time, a method has become available for fast computation of near-best rational approximations on arbitrary sets in the real line or complex plane: the AAA algorithm (Nakatsukasa-Sète-T. 2018).  After a brief presentation of the algorithm this talk will focus on twenty demonstrations of the kinds of things we can do, all across applied mathematics, with a black-box rational approximation tool.
 

Subscribe to Computational Mathematics and Applications Seminar