Research group
Geometry
Mon, 12 May 2025
14:15
L5

Tight contact structures and twisted geodesics

Michael Schmalian
(Mathematical Institute (University of Oxford))
Abstract

Contact topology and hyperbolic geometry are two well-established, yet so far largely unrelated subfields of 3-manifold topology. We will discuss a recent result relating phenomena in these two fields. Specifically, we will demonstrate that tightness of certain contact structures on hyperbolic manifolds is detected by the behaviour of geodesics in the underlying hyperbolic geometry. A key geometric tool we will discuss is the deformation theory for hyperbolic manifolds. 

Mon, 05 May 2025
14:15
L5

The state of the art in the formalisation of geometry

Heather Macbeth
(Imperial College London)
Abstract
The last ten years have seen extensive experimentation with computer formalisation systems such as Lean. It is now clear that these systems can express arbitrarily abstract mathematical definitions, and arbitrarily complicated mathematical proofs.
 
The current situation, then, is that everything is possible in principle -- and comparatively little is possible yet in practice! In this talk I will survey the state of the art in geometry (differential and algebraic). I will outline the current frontier of what has been formalised, and I will try to explain the main obstacles to progress.
Mon, 28 Apr 2025
14:15
L5

Complex Dynamics — degenerations and irreducibility problems

Rohini Ramadas
(University of Warwick)
Abstract

Complex dynamics is the study of the behaviour, under iteration, of complex polynomials and rational functions. This talk is about an application of combinatorial algebraic geometry to complex dynamics. The n-th Gleason polynomial G_n is a polynomial in one variable with Z-coefficients, whose roots correspond to degree-2 polynomials with an n-periodic critical point. Per_n is a (nodal) Riemann surface parametrizing degree-2 rational functions with an n-periodic critical point. Two long-standing open questions are: (1) Is G_n is irreducible over Q? (2) Is Per_n connected? I will sketch an argument showing that if G_n is irreducible over Q, then Per_n is connected. In order to do this, we find a special degeneration of degree-2 rational maps that tells us that Per_n has smooth point with Q-coordinates "at infinity”.

Mon, 26 May 2025
14:15
L5

Towards a gauge-theoretic approximation of codimension-three area

Alessandro Pigati
(Bocconi University)
Abstract

In the last three decades, a fruitful way to approximate the area functional in low codimension is to interpret submanifolds as the nodal sets of maps (or sections of vector bundles), critical for suitable physical energies or well-known lagrangians from gauge theory. Inspired by the situation in codimension two, where the abelian Higgs model has provided a successful framework, we look at the non-abelian SU(2) model as a natural candidate in codimension three. In this talk we will survey the new key difficulties and some recent partial results, including a joint work with D. Parise and D. Stern and another result by Y. Li.

Mon, 09 Jun 2025
12:15
L5

$3$-$(\alpha,\delta)$-Sasaki manifolds and strongly positive curvature

Ilka Agricola
(Philipps-Universität Marburg)
Abstract
$3$-$(\alpha,\delta)$-Sasaki manifolds are a natural generalisation of $3$-Sasaki manifolds, which in dimension $7$ are intricately related to $G_2$ geometry. We show how these are closely related to various types of quaternionic Kähler orbifolds via connections with skew-torsion and an interesting canonical submersion. Making use of this relation we discuss curvature operators and show that in dimension 7 many such manifolds have strongly positive curvature, a notion originally introduced by Thorpe. 

 
Mon, 24 Feb 2025
14:15
L5

Tame fundamental groups of rigid spaces

Piotr Achinger
(Institute of Mathematics - Polish Academy of Sciences)
Abstract

The fundamental group of a complex variety is finitely presented. The talk will survey algebraic variants (in fact, distant corollaries) of this fact, in the context of variants of the etale fundamental group. We will then zoom in on "tame" etale fundamental groups of p-adic analytic spaces. Our main result is that it is (topologically) finitely generated (for a quasi-compact and quasi-separated rigid space over an algebraically closed field).  The proof uses logarithmic geometry beyond its usual scope of finitely generated monoids to (eventually) reduce the problem to the more classical one of finite generation of tame fundamental groups of algebraic varieties over the residue field. This is joint work with Katharina Hübner, Marcin Lara, and Jakob Stix.

Mon, 02 Jun 2025
14:15
L5

Laplacian spectra of minimal submanifolds in the hyperbolic space

Gerasim Kokarev
(Leeds)
Abstract
I will describe an extremal problem for the fundamental tone of submanifolds in the hyperbolic space, and will show that singular minimal submanifolds occur as natural maximisers for it. I will also discuss a closely related rigidity phenomenon for the Laplacian spectra of minimal submanifolds.
Mon, 03 Feb 2025
14:15
L5

ALC G2-manifolds

Lorenzo Foscolo
(La Sapienza, Rome)
Abstract

ALF gravitational instantons, of which the Taub-NUT and Atiyah-Hitchin metrics are prototypes, are the complete non-compact hyperkähler 4-manifolds with cubic volume growth. Examples have been known since the 1970's, but a complete classification was only given around 10 years ago. In this talk, I will present joint work with Haskins and Nordström where we extend some of these results to complete non-compact 7-manifolds with holonomy G2 and an asymptotic geometry, called ALC (asymptotically locally conical), that generalises to higher dimension the asymptotic geometry of ALF spaces.

Subscribe to Geometry and Analysis Seminar