14:15
Non-generic neck pinching in Lagrangian mean curvature flow
Abstract
14:15
Minimal surfaces and hypersurfaces in the unit spheres and their index
Abstract
I will discuss recent and ongoing work (mostly with J. Zou).
14:15
Biharmonic maps on conformally compact manifolds
Abstract
In this talk, I will present a result proved in my recent paper arXiv:2502.13580. I will discuss biharmonic maps between (and submanifolds of) conformally compact manifolds, a large class of complete manifolds generalizing hyperbolic space. After an introduction to conformally compact geometry, I will discuss one of the main results of the paper: if S is a properly embedded sub-manifold of a conformally compact manifold (N,h), and moreover S is transverse to the boundary and (N,h) has non-positive curvature, then S must be minimal. This result confirms a conjecture known as the Generalized Chen’s Conjecture, in the conformally compact context.
14:15
Quantitative symplectic geometry of disk tangent bundles
Abstract
Symplectic capacities are symplectic invariants that measure the “size” of symplectic manifolds and are designed to capture phenomena of symplectic rigidity.
In this talk, I will focus on symplectic capacities of fiberwise convex domains in cotangent bundles. This setting provides a natural link to the systolic geometry of the base manifold. I will survey current results and discuss the variety of techniques used to compute symplectic capacities, ranging from billiard dynamics to pseudoholomorphic curves and symplectic homology. I will illustrate these techniques using disk tangent bundles of ellipsoids as an example.
14:15
Embedded minimal surfaces in closed analytic 3-manifolds
Abstract
I will discuss an ongoing joint work with Luigi Appolloni and Andrea Malchiodi concerning the above objects. Minimal surfaces are critical points of the area functional, which is analytic in this case, so we should expect critical points (minimal surfaces) to be either isolated or to belong to smooth nearby minimal foliations. On the other hand, the flat plane of multiplicity two in $\mathbb{R}^3$ can be (in compact regions) approximated by a blown-down catenoid, which will converge back to the plane with multiplicity two in the limit. Hence a plane of multiplicity two cannot be thought of as being isolated, or belonging solely to a smooth family, because there are “nearby” minimal surfaces of distinct topology weakly converging to it. We will nevertheless prove that, when the ambient manifold is closed and analytic, this type of local degeneration is impossible amongst closed and embedded minimal surfaces of bounded topology: such surfaces, even with multiplicity are either isolated or belong to smooth families of nearby minimal surfaces.
14:15
Metric wall-crossing
Abstract
14:15
A toric case of the Thomas-Yau conjecture
Abstract
We consider a class of Lagrangian sections L contained in certain Calabi-Yau Lagrangian fibrations (mirrors of toric weak Fano manifolds). We prove that a form of the Thomas-Yau conjecture holds in this case: L is isomorphic to a special Lagrangian section in this class if and only if a stability condition holds, in the sense of a slope inequality on objects in a set of exact triangles in the Fukaya-Seidel category. This agrees with general proposals by Li. On
surfaces and threefolds, under more restrictive assumptions, this result can be used to show a precise relation with Bridgeland stability, as predicted by Joyce. Based on arXiv:2505.07228 and arXiv:2508.17709.
14:15
Bubble sheets and $\kappa$-solutions in four-dimensional Ricci flow
Abstract
As discovered by Perelman, the study of ancient Ricci flows which are $\kappa$-noncollapsed is a crucial prerequisite to understanding the singularity behaviour of more general Ricci flows. In dimension three, these so-called "$\kappa$-solutions" have been fully classified through the groundbreaking work of Brendle, Daskalopoulos, and Šešum. Their classification result can be extended to higher dimensions, but only for those Ricci flows that have uniformly positive isotropic curvature (PIC), as well as weakly-positive isotropic curvature of the second type (PIC2); it appears the classification result fails with only minor modifications to the curvature assumption. Indeed, with the alternative assumption of non-negative curvature operator, a rich variety of new examples emerge, as recently constructed by Buttsworth, Lai, and Haslhofer; Haslhofer himself has conjectured that this list of non-negatively curved $\kappa$-solutions is now exhaustive in dimension four. In this talk, we will discuss some recent progress towards resolving Haslhofer's conjecture, including a compactness result for non-negatively curved $\kappa$-solutions in dimension four, and a symmetry improvement result for bubble-sheet regions. This is joint work with Anusha Krishnan and Timothy Buttsworth.
14:15
Towards a Taub-Bolt to Taub-NUT via Ricci flow with surgery
Abstract
A conjecture of Holzegel, Schmelzer and Warnick states that there is a Ricci flow with surgery connecting the two Ricci flat metrics Taub-Bolt and Taub-NUT. We will present some recent progress towards proving this conjecture. This includes showing for the first time the existence of a Ricci flow with surgery with local topology change $\mathbb{CP}^2\setminus\{ \mathrm{pt}\} \rightarrow \mathbb{R}^4$.