Research group
Geometry
Tue, 03 Jun 2025
15:00
L5

TBC

Mon, 05 May 2025
14:15
L5

The state of the art in the formalisation of geometry

Heather Macbeth
(Imperial College London)
Abstract
The last ten years have seen extensive experimentation with computer formalisation systems such as Lean. It is now clear that these systems can express arbitrarily abstract mathematical definitions, and arbitrarily complicated mathematical proofs.
 
The current situation, then, is that everything is possible in principle -- and comparatively little is possible yet in practice! In this talk I will survey the state of the art in geometry (differential and algebraic). I will outline the current frontier of what has been formalised, and I will try to explain the main obstacles to progress.
Mon, 28 Apr 2025
14:15
L5

Complex Dynamics — degenerations and irreducibility problems

Rohini Ramadas
(University of Warwick)
Abstract

Complex dynamics is the study of the behaviour, under iteration, of complex polynomials and rational functions. This talk is about an application of combinatorial algebraic geometry to complex dynamics. The n-th Gleason polynomial G_n is a polynomial in one variable with Z-coefficients, whose roots correspond to degree-2 polynomials with an n-periodic critical point. Per_n is a (nodal) Riemann surface parametrizing degree-2 rational functions with an n-periodic critical point. Two long-standing open questions are: (1) Is G_n is irreducible over Q? (2) Is Per_n connected? I will sketch an argument showing that if G_n is irreducible over Q, then Per_n is connected. In order to do this, we find a special degeneration of degree-2 rational maps that tells us that Per_n has smooth point with Q-coordinates "at infinity”.

Mon, 26 May 2025
14:15
L5

Towards a gauge-theoretic approximation of codimension-three area

Alessandro Pigati
(Bocconi University)
Abstract

In the last three decades, a fruitful way to approximate the area functional in low codimension is to interpret submanifolds as the nodal sets of maps (or sections of vector bundles), critical for suitable physical energies or well-known lagrangians from gauge theory. Inspired by the situation in codimension two, where the abelian Higgs model has provided a successful framework, we look at the non-abelian SU(2) model as a natural candidate in codimension three. In this talk we will survey the new key difficulties and some recent partial results, including a joint work with D. Parise and D. Stern and another result by Y. Li.

Mon, 09 Jun 2025
14:15
L5

$3$-$(\alpha,\delta)$-Sasaki manifolds and strongly positive curvature

Ilka Agricola
(Philipps-Universität Marburg)
Abstract
$3$-$(\alpha,\delta)$-Sasaki manifolds are a natural generalisation of $3$-Sasaki manifolds, which in dimension $7$ are intricately related to $G_2$ geometry. We show how these are closely related to various types of quaternionic Kähler orbifolds via connections with skew-torsion and an interesting canonical submersion. Making use of this relation we discuss curvature operators and show that in dimension 7 many such manifolds have strongly positive curvature, a notion originally introduced by Thorpe. 

 
Mon, 16 Jun 2025
14:15
L5

BPS polynomials and Welschinger invariants

Pierrick Bousseau
(University of Georgia)
Abstract
For any smooth projective surface $S$, we introduce BPS polynomials — Laurent polynomials in a formal variable $q$ — derived from the higher genus Gromov–Witten theory of the 3-fold $S \times {\mathbb P}^1$. When $S$ is a toric del Pezzo surface, we prove that these polynomials coincide with the Block–Göttsche polynomials defined in terms of tropical curve counts. Beyond the toric case, we conjecture that for surfaces $S_n$ obtained by blowing up ${\mathbb P}^2$ at $n$ general points, the evaluation of BPS polynomials at $q=-1$ yields Welschinger invariants, given by signed counts of real rational curves. We verify a relative version of this conjecture for all the surfaces $S_n$, and prove the main conjecture for n less than or equal to 6. This establishes a surprising link between real and complex curve enumerations, going via higher genus Gromov-Witten theory. Additionally, we propose a conjectural relationship between BPS polynomials and refined Donaldson–Thomas invariants. This is joint work with Hulya Arguz.



 

Mon, 24 Feb 2025
14:15
L5

Tame fundamental groups of rigid spaces

Piotr Achinger
(Institute of Mathematics - Polish Academy of Sciences)
Abstract

The fundamental group of a complex variety is finitely presented. The talk will survey algebraic variants (in fact, distant corollaries) of this fact, in the context of variants of the etale fundamental group. We will then zoom in on "tame" etale fundamental groups of p-adic analytic spaces. Our main result is that it is (topologically) finitely generated (for a quasi-compact and quasi-separated rigid space over an algebraically closed field).  The proof uses logarithmic geometry beyond its usual scope of finitely generated monoids to (eventually) reduce the problem to the more classical one of finite generation of tame fundamental groups of algebraic varieties over the residue field. This is joint work with Katharina Hübner, Marcin Lara, and Jakob Stix.

Mon, 02 Jun 2025
14:15
L5

Laplacian spectra of minimal submanifolds in the hyperbolic space

Gerasim Kokarev
(Leeds)
Abstract
I will describe an extremal problem for the fundamental tone of submanifolds in the hyperbolic space, and will show that singular minimal submanifolds occur as natural maximisers for it. I will also discuss a closely related rigidity phenomenon for the Laplacian spectra of minimal submanifolds.
Mon, 03 Feb 2025
14:15
L5

ALC G2-manifolds

Lorenzo Foscolo
(La Sapienza, Rome)
Abstract

ALF gravitational instantons, of which the Taub-NUT and Atiyah-Hitchin metrics are prototypes, are the complete non-compact hyperkähler 4-manifolds with cubic volume growth. Examples have been known since the 1970's, but a complete classification was only given around 10 years ago. In this talk, I will present joint work with Haskins and Nordström where we extend some of these results to complete non-compact 7-manifolds with holonomy G2 and an asymptotic geometry, called ALC (asymptotically locally conical), that generalises to higher dimension the asymptotic geometry of ALF spaces.

Mon, 03 Mar 2025
14:15
L5

Seiberg-Witten equations in all dimensions

Joel Fine
(Université libre de Bruxelles (ULB))
Abstract

I will describe a generalisation of the Seiberg-Witten equations to a Spin-c manifold of any dimension. The equations are for a U(1) connection A and spinor \phi and also an odd-degree differential form b (of inhomogeneous degree). Clifford action of the form is used to perturb the Dirac operator D_A. The first equation says that (D_A+b)(\phi)=0. The second equation involves the Weitzenböck remainder for D_A+b, setting it equal to q(\phi), where q(\phi) is the same quadratic term which appears in the usual Seiberg-Witten equations. This system is elliptic modulo gauge in dimensions congruent to 0,1 or 3 mod 4. In dimensions congruent to 2 mod 4 one needs to take two copies of the system, coupled via b. I will also describe a variant of these equations which make sense on manifolds with a Spin(7) structure. The most important difference with the familiar 3 and 4 dimensional stories is that compactness of the space of solutions is, for now at least, unclear. This is joint work with Partha Ghosh and, in the Spin(7) setting, Ragini Singhal.

Subscribe to Geometry and Analysis Seminar