Research group
Geometry
Mon, 03 Mar 2025
14:15
L5

Seiberg-Witten equations in all dimensions

Joel Fine
(Université libre de Bruxelles (ULB))
Abstract

I will describe a generalisation of the Seiberg-Witten equations to a Spin-c manifold of any dimension. The equations are for a U(1) connection A and spinor \phi and also an odd-degree differential form b (of inhomogeneous degree). Clifford action of the form is used to perturb the Dirac operator D_A. The first equation says that (D_A+b)(\phi)=0. The second equation involves the Weitzenböck remainder for D_A+b, setting it equal to q(\phi), where q(\phi) is the same quadratic term which appears in the usual Seiberg-Witten equations. This system is elliptic modulo gauge in dimensions congruent to 0,1 or 3 mod 4. In dimensions congruent to 2 mod 4 one needs to take two copies of the system, coupled via b. I will also describe a variant of these equations which make sense on manifolds with a Spin(7) structure. The most important difference with the familiar 3 and 4 dimensional stories is that compactness of the space of solutions is, for now at least, unclear. This is joint work with Partha Ghosh and, in the Spin(7) setting, Ragini Singhal.

Mon, 20 Jan 2025
14:15
L5

Yang-Mills on an ALF-fibration

Jakob Stein
(UNICAMP)
Abstract

In this talk, we will make an explicit link between self-dual Yang-Mills instantons on the Taub-NUT space, and G2-instantons on the BGGG space, by displaying the latter space as a fibration by the former. In doing so, we will discuss analysis on non-compact manifolds, circle symmetries, and a new method of constructing solutions to quadratically singular ODE systems. This talk is based on joint work with Matt Turner: https://arxiv.org/pdf/2409.03886

Mon, 10 Feb 2025
14:15
L5

The Schubert variety of a hyperplane arrangement

Nick Proudfoot
(University of Oregon)
Abstract

I’ll tell you about some of my favorite algebraic varieties, which are beautiful in their own right, and also have some dramatic applications to algebraic combinatorics.  These include the top-heavy conjecture (one of the results for which June Huh was awarded the Fields Medal), as well as non-negativity of Kazhdan—Lusztig polynomials of matroids.

Mon, 10 Mar 2025
14:15
L5

A functorial approach to quantization of symplectic singularities

Lewis Topley
(University of Bath)
Abstract

Namikawa has shown that the functor of flat graded Poisson deformations of a conic symplectic singularity is unobstructed and pro-representable. In a subsequent work, Losev showed that the universal Poisson deformation admits, a quantization which enjoys a rather remarkable universal property. In a recent work, we have repackaged the latter theorem as an expression of the representability of a new functor: the functor of quantizations. I will describe how this theorem leads to an easy proof of the existence of a universal equivariant quantizations, and outline a work in progress in which we describe a presentation of a rather complicated quantum Hamiltonian reduction: the finite W-algebra associated to a nilpotent element in a classical Lie algebra. The latter result hinges on new presentations of twisted Yangians.

Thu, 24 Oct 2024
16:00
L6

COW SEMINAR: Derived symmetries for crepant resolutions of hypersurfaces

Will Donovan
(Tsinghua)
Abstract

Given a singularity with a crepant resolution, a symmetry of the derived 
category of coherent sheaves on the resolution may often be constructed 
using the formalism of spherical functors. I will introduce this, and 
new work (arXiv:2409.19555) on general constructions of such symmetries 
for hypersurface singularities. This builds on previous results with 
Segal, and is inspired by work of Bodzenta-Bondal.

Thu, 24 Oct 2024
14:30
L6

COW SEMINAR: Homological mirror symmetry for K3 surfaces

Ailsa Keating
(Cambridge)
Abstract

Joint work with Paul Hacking (U Mass Amherst). We first explain how to 
prove homological mirror symmetry for a maximal normal crossing 
Calabi-Yau surface Y with split mixed Hodge structure. This includes the 
case when Y is a type III K3 surface, in which case this is used to 
prove a conjecture of Lekili-Ueda. We then explain how to build on this 
to prove an HMS statement for K3 surfaces. On the symplectic side, we 
have any K3 surface (X, ω) with ω integral Kaehler; on the algebraic 
side, we get a K3 surface Y with Picard rank 19. The talk will aim to be 
accessible to audience members with a wide range of mirror symmetric 
backgrounds.

Thu, 24 Oct 2024
13:00
L6

COW SEMINAR: Ball quotients and moduli spaces

Klaus Hulek
(Hannover)
Abstract

A number of moduli problems are, via Hodge theory, closely related to 
ball quotients. In this situation there is often a choice of possible 
compactifications such as the GIT compactification´and its Kirwan 
blow-up or the Baily-Borel compactification and the toroidal 
compactificatikon. The relationship between these compactifications is 
subtle and often geometrically interesting. In this talk I will discuss 
several cases, including cubic surfaces and threefolds and 
Deligne-Mostow varieties. This discussion links several areas such as 
birational geometry, moduli spaces of pointed curves, modular forms and 
derived geometry. This talk is based on joint work with S. 
Casalaina-Martin, S. Grushevsky, S. Kondo, R. Laza and Y. Maeda.

Mon, 25 Nov 2024
14:15
L4

CANCELLED

Simon Felten
(Oxford)
Abstract

A well-known problem in algebraic geometry is to construct smooth projective Calabi--Yau varieties $Y$. In the smoothing approach, we construct first a degenerate (reducible) Calabi--Yau scheme $V$ by gluing pieces. Then we aim to find a family $f\colon X \to C$ with special fiber $X_0 = f^{-1}(0) \cong V$ and smooth general fiber $X_t = f^{-1}(t)$. In this talk, we see how infinitesimal logarithmic deformation theory solves the second step of this approach: the construction of a family out of a degenerate fiber $V$. This is achieved via the logarithmic Bogomolov--Tian--Todorov theorem as well as its variant for pairs of a log Calabi--Yau space $f_0\colon X_0 \to S_0$ and a line bundle $\mathcal{L}_0$ on $X_0$.
 

Mon, 11 Nov 2024
14:15
L4

Derived Spin structures and moduli of sheaves on Calabi-Yau fourfolds

Nikolas Kuhn
(Oxford)
Abstract

I will present a notion of spin structure on a perfect complex in characteristic zero, generalizing the classical notion for an (algebraic) vector bundle. For a complex $E$ on $X$ with an oriented quadratic structure one obtains an associated ${\mathbb Z}/2{\mathbb Z}$-gerbe over X which obstructs the existence of a spin structure on $E$. This situation arises naturally on moduli spaces of coherent sheaves on Calabi-Yau fourfolds. Using spin structures as orientation data, we construct a categorical refinement of a K-theory class constructed by Oh-Thomas on such moduli spaces.

Mon, 14 Oct 2024
14:15
L4

Complete cohomogeneity one solitons for G_2 Laplacian flow

Johannes Nordstrom
(Bath)
Abstract

Bryant’s Laplacian flow is an analogue of Ricci flow that seeks to flow an arbitrary initial closed $G_2$-structure on a 7-manifold toward a torsion-free one, to obtain a Ricci-flat metric with holonomy $G_2$. This talk will give an overview of joint work with Mark Haskins and Rowan Juneman about complete self-similar solutions on the anti-self-dual bundles of ${\mathbb CP}^2$ and $S^4$, with cohomogeneity one actions by SU(3) and Sp(2) respectively. We exhibit examples of all three classes of soliton (steady, expander and shrinker) that are asymptotically conical. In the steady case these form a 1-parameter family, with a complete soliton with exponential volume growth at the boundary of the family. All complete Sp(2)-invariant expanders are asymptotically conical, but in the SU(3)-invariant case there appears to be a boundary of complete expanders with doubly exponential volume growth.

Subscribe to Geometry and Analysis Seminar