Research group
Geometry
Mon, 19 Feb 2018

14:15 - 15:15
L4

Stratifying moduli stacks and constructing moduli spaces of unstable sheaves

Vicky Hoskins
(Freie Universität Berlin)
Abstract

For many moduli problems, in order to construct a moduli space as a geometric invariant theory quotient, one needs to impose a notion of (semi)stability. Using recent results in non-reductive geometric invariant theory, we explain how to stratify certain moduli stacks in such a way that each stratum admits a coarse moduli space which is constructed as a geometric quotient of an action of a linear algebraic group with internally graded unipotent radical. As many stacks are
naturally filtered by quotient stacks, this involves describing how to stratify certain quotient stacks. Even for quotient stacks for reductive group actions, we see that non-reductive GIT is required to construct the coarse moduli spaces of the higher strata. We illustrate this point by studying the example of the moduli stack of coherent sheaves over a projective scheme. This is joint work with G. Berczi, J. Jackson and F. Kirwan.

Mon, 12 Feb 2018

14:15 - 15:15
L4

p-adic integration for the Hitchin fibration

Paul Ziegler
(Oxford)
Abstract

I will talk about recent work, joint with M. Gröchenig and D. Wyss, on two related results involving the cohomology of moduli spaces of Higgs bundles. The first is a positive answer to a conjecture of Hausel and Thaddeus which predicts the equality of suitably defined Hodge numbers of moduli spaces of Higgs bundles with SL(n)- and PGL(n)-structure. The second is a new proof of Ngô's geometric stabilization theorem which appears in the proof of the fundamental lemma. I will give an introduction to these theorems and outline our argument, which, inspired by work of Batyrev, proceeds by comparing the number of points of these moduli spaces over finite fields via p-adic integration.

 

Mon, 05 Feb 2018

14:15 - 15:15
L5

On symplectic stabilisations and mapping classes

Ailsa Keating
(Cambridge)
Abstract

In real dimension two, the symplectic mapping class group of a surface agrees with its `classical' mapping class group, whose properties are well-understood. To what extend do these generalise to higher-dimensions? We consider specific pairs of symplectic manifolds (S, M), where S is a surface, together with collections of Lagrangian spheres in S and in M, say v_1, ...,v_k and V_1, ...,V_k, that have analogous intersection patterns, in a sense that we will make precise. Our main theorem is that any relation between the Dehn twists in the V_i must also hold between Dehn twists in the v_i. Time allowing, we will give some corollaries, such as embeddings of certain interesting groups into auto-equivalence groups of Fukaya categories.

 

Mon, 29 Jan 2018

14:15 - 15:15
L5

Compactness results for minimal hypersurfaces with bounded index

Reto Buzano
(Queen Mary University London)
Abstract

First, we will discuss sequences of closed minimal hypersurfaces (in closed Riemannian manifolds of dimension up to 7) that have uniformly bounded index and area. In particular, we explain a bubbling result which yields a bound on the total curvature along the sequence and, as a consequence, topological control in terms of index and area. We then specialise to minimal surfaces in ambient manifolds of dimension 3, where we use the bubbling analysis to obtain smooth multiplicity-one convergence under bounds on the index and genus. This is joint work with Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp

Mon, 22 Jan 2018

14:15 - 15:15
L5

Geometry of subrings

Brent Doran
(Oxford)
Abstract

 The basic algebra-geometry dictionary for finitely generated k-algebras is one of the triumphs of 19th and early 20th century mathematics.  However, classes of related rings, such as their k-subalgebras, lack clean general properties or organizing principles, even when they arise naturally in problems of smooth projective geometry.  “Stabilization” in smooth topology and symplectic geometry, achieved by products with Euclidean space, substantially simplifies many
problems.  We discuss an analog in the more rigid setting of algebraic and arithmetic geometry, which, among other things (e.g., applications to counting rational points), gives some structure to the study of k-subalgebras.  We focus on the case of the moduli space of stable rational n-pointed curves to illustrate.

 

Mon, 04 Dec 2017
14:15
L5

Floer homology, group orders, and taut foliations of hyperbolic 3-manifolds

Nathan Dunfield
(Illinois at Urbana-Champaign)
Abstract

A bold conjecture of Boyer-Gorden-Watson and others posit that for any irreducible rational homology 3-sphere M the following three conditions are equivalent: (1) the fundamental group of M is left-orderable, (2) M has non-minimal Heegaard Floer homology, and (3) M admits a co-orientable taut foliation. Very recently, this conjecture was established for all graph manifolds by the combined work of Boyer-Clay and Hanselman-Rasmussen-Rasmussen-Watson. I will discuss a computational survey of these properties involving half a million hyperbolic 3-manifolds, including new or at least improved techniques for computing each of these properties.
 

Mon, 06 Nov 2017
14:15
L5

An obstruction to planarity of contact structures

Marco Golla
(Oxford)
Abstract


We give new obstructions to the existence of planar open books on contact structures, in terms of the homology of their fillings. I will talk about applications to links of surface singularities, Seifert fibred spaces, and integer homology spheres. No prior knowledge of contact or symplectic topology will be assumed. This is joint work with Paolo Ghiggini and Olga Plamenevskaya.
 

Mon, 09 Oct 2017

14:15 - 15:15
L4

Morse inequalities for arbitrary smooth functions

Frances Kirwan
(Oxford)
Abstract

A Morse function (and more generally a Morse-Bott function) on a compact manifold M has associated Morse inequalities. The aim of this
talk is to explain how we can associate Morse inequalities to any smooth function on M (reporting on work of/with G Penington).

 

Mon, 13 Nov 2017

14:15 - 15:15
L5

Surface homeomorphisms and their lifts by covering maps

Mehdi Yazdi
(Oxford)
Abstract

A generic surface homeomorphism (up to isotopy) is what we call it pseudo-Anosov. These maps come equipped with an algebraic integer that measures
how much the map stretches/shrinks in different direction, called the stretch factor. Given a surface homeomorsphism, one can ask if it is the lift (by a branched or unbranched cover) of another homeomorphism on a simpler surface possibly of small genus. Farb conjectured that if the algebraic degree of the stretch factor is bounded above, then the map can be obtained by lifting another homeomorphism on a surface of bounded genus.
This was known to be true for quadratic algebraic integers by a Theorem of Franks-Rykken. We construct counterexamples to Farb's conjecture.

 

Mon, 30 Oct 2017

14:15 - 15:15
L5

Almost Kähler 4-manifolds of Constant Holomorphic Sectional Curvature are Kähler

Markus Upmeier
(Oxford)
Abstract

We show that a closed almost Kähler 4-manifold of globally constant holomorphic sectional curvature k<=0 with respect to the canonical Hermitian connection is automatically Kähler. The same result holds for k < 0 if we require in addition that the Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern–Weil theory implies useful integral formulas, which are then combined with results from Seiberg–Witten theory.

Subscribe to Geometry and Analysis Seminar