Research group
Geometry
Mon, 21 May 2018

14:15 - 15:15
L4

Higher rank local systems and topology of monotone Lagrangians in projective space

Momchil Konstantinov
(UCL)
Abstract

Lagrangian Floer cohomology can be enriched by using local coefficients to record some homotopy data about the boundaries of the holomorphic disks counted by the theory. In this talk I will explain how one can do this under the monotonicity assumption and when the Lagrangians are equipped with local systems of rank higher than one. The presence of holomorphic discs of Maslov index 2 poses a potential obstruction to such an extension. However, for an appropriate choice of local systems the obstruction might vanish and, if not,
one can always restrict to some natural unobstructed subcomplexes. I will showcase these constructions with some explicit calculations for the Chiang Lagrangian in CP^3 showing that it cannot be disjoined from RP^3 by a Hamiltonian isotopy, answering a question of Evans-Lekili. Time permitting, I will also discuss some work-in-progress on the topology of monotone Lagrangians in CP^3, part of which follows from more general joint work with Jack Smith on the topology of monotone Lagrangians of maximal Maslov number in
projective spaces.

 

Mon, 14 May 2018

14:15 - 15:15
L4

Families of Hyperkaehler varieties via families of stability conditions

Arend Bayer
(Edinburgh)
Abstract

Stability conditions on derived categories of algebraic varieties and their wall-crossings have given algebraic geometers a number of new tools to study the geometry of moduli spaces of stable sheaves. In work in progress with Macri, Lahoz, Nuer, Perry and Stellari, we are extending this toolkit to a the "relative" setting, i.e. for a family of varieties. Our construction comes with relative moduli spaces of stable objects; this gives additional ways of constructing new families of varieties from a given family, thereby potentially relating different moduli spaces of varieties.

 

Mon, 07 May 2018

14:15 - 15:15
L4

Tautological integrals over Hilbert scheme of points.

Greg Berczi
(ETH Zurich)
Abstract

I present recently developed iterated residue formulas for tautological integrals over Hilbert schemes of points on  smooth  manifolds. Applications include curve and hypersurface counting formulas. Joint work with Andras Szenes.

 

Mon, 05 Mar 2018

14:15 - 15:15
L4

Stratified hyperkähler spaces

Maxence Mayrand
(Oxford)
Abstract

Symplectic reduction is the natural quotient construction for symplectic manifolds. Given a free and proper action of a Lie group G on a symplectic manifold M, this process produces a new symplectic manifold of dimension dim(M) - 2 dim(G). For non-free actions, however, the result is usually fairly singular. But Sjamaar-Lerman (1991) showed that the singularities can be understood quite precisely: symplectic reductions by non-free actions are partitioned into smooth symplectic manifolds, and these manifolds fit nicely together in the sense that they form a stratification.

Symplectic reduction has an analogue in hyperkähler geometry, which has been a very important tool for constructing new examples of these special manifolds. In this talk, I will explain how Sjamaar-Lerman’s results can be extended to this setting, namely, hyperkähler quotients by non-free actions are stratified
spaces whose strata are hyperkähler.

 

Mon, 26 Feb 2018

14:15 - 15:15
L4

Coulomb branch, 3d Mirror symmetry, and Implosions

Amihay Hanany
(Imperial)
Abstract

3d N=4 supersymmetric gauge theories provide a method for constructing HyperK\”ahler singularities, known as the Coulomb branch.
This method is complementary to the more traditional way of construction using HyperK\”ahler quotients, known in physics as the “Higgs branch”.
Out of all possible gauge theories there is an interesting subclass of quiver varieties, where the Coulomb branch has been studied in some detail.
Some examples are moduli spaces of classical and exceptional instantons and closures of nilpotent orbits. An interesting feature of Coulomb and Higgs branches is the phenomenon of "3d mirror symmetry” where for a pair of gauge theories, the Higgs branch and Coulomb branch exchange.
There is a large class of “mirror pairs” which I will discuss in some detail.

A topic of recent interest is the notion of implosions. I will argue that there is a simple operation on the quiver which leads to implosion. In other words, given a quiver such that its Coulomb branch is moduli space A, a simple operation of the quiver (making a bouquet) provides the implosion of A.
This has been tested on closures of nilpotent orbits of A type and on nilpotent cones of orthogonal groups and found to agree with the expected results.
If time permits, I will discuss isometries of Coulomb branches

Mon, 19 Feb 2018

14:15 - 15:15
L4

Stratifying moduli stacks and constructing moduli spaces of unstable sheaves

Vicky Hoskins
(Freie Universität Berlin)
Abstract

For many moduli problems, in order to construct a moduli space as a geometric invariant theory quotient, one needs to impose a notion of (semi)stability. Using recent results in non-reductive geometric invariant theory, we explain how to stratify certain moduli stacks in such a way that each stratum admits a coarse moduli space which is constructed as a geometric quotient of an action of a linear algebraic group with internally graded unipotent radical. As many stacks are
naturally filtered by quotient stacks, this involves describing how to stratify certain quotient stacks. Even for quotient stacks for reductive group actions, we see that non-reductive GIT is required to construct the coarse moduli spaces of the higher strata. We illustrate this point by studying the example of the moduli stack of coherent sheaves over a projective scheme. This is joint work with G. Berczi, J. Jackson and F. Kirwan.

Mon, 12 Feb 2018

14:15 - 15:15
L4

p-adic integration for the Hitchin fibration

Paul Ziegler
(Oxford)
Abstract

I will talk about recent work, joint with M. Gröchenig and D. Wyss, on two related results involving the cohomology of moduli spaces of Higgs bundles. The first is a positive answer to a conjecture of Hausel and Thaddeus which predicts the equality of suitably defined Hodge numbers of moduli spaces of Higgs bundles with SL(n)- and PGL(n)-structure. The second is a new proof of Ngô's geometric stabilization theorem which appears in the proof of the fundamental lemma. I will give an introduction to these theorems and outline our argument, which, inspired by work of Batyrev, proceeds by comparing the number of points of these moduli spaces over finite fields via p-adic integration.

 

Mon, 05 Feb 2018

14:15 - 15:15
L5

On symplectic stabilisations and mapping classes

Ailsa Keating
(Cambridge)
Abstract

In real dimension two, the symplectic mapping class group of a surface agrees with its `classical' mapping class group, whose properties are well-understood. To what extend do these generalise to higher-dimensions? We consider specific pairs of symplectic manifolds (S, M), where S is a surface, together with collections of Lagrangian spheres in S and in M, say v_1, ...,v_k and V_1, ...,V_k, that have analogous intersection patterns, in a sense that we will make precise. Our main theorem is that any relation between the Dehn twists in the V_i must also hold between Dehn twists in the v_i. Time allowing, we will give some corollaries, such as embeddings of certain interesting groups into auto-equivalence groups of Fukaya categories.

 

Mon, 29 Jan 2018

14:15 - 15:15
L5

Compactness results for minimal hypersurfaces with bounded index

Reto Buzano
(Queen Mary University London)
Abstract

First, we will discuss sequences of closed minimal hypersurfaces (in closed Riemannian manifolds of dimension up to 7) that have uniformly bounded index and area. In particular, we explain a bubbling result which yields a bound on the total curvature along the sequence and, as a consequence, topological control in terms of index and area. We then specialise to minimal surfaces in ambient manifolds of dimension 3, where we use the bubbling analysis to obtain smooth multiplicity-one convergence under bounds on the index and genus. This is joint work with Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp

Mon, 22 Jan 2018

14:15 - 15:15
L5

Geometry of subrings

Brent Doran
(Oxford)
Abstract

 The basic algebra-geometry dictionary for finitely generated k-algebras is one of the triumphs of 19th and early 20th century mathematics.  However, classes of related rings, such as their k-subalgebras, lack clean general properties or organizing principles, even when they arise naturally in problems of smooth projective geometry.  “Stabilization” in smooth topology and symplectic geometry, achieved by products with Euclidean space, substantially simplifies many
problems.  We discuss an analog in the more rigid setting of algebraic and arithmetic geometry, which, among other things (e.g., applications to counting rational points), gives some structure to the study of k-subalgebras.  We focus on the case of the moduli space of stable rational n-pointed curves to illustrate.

 

Subscribe to Geometry and Analysis Seminar