Research group
Geometry
Mon, 29 Jan 2018

14:15 - 15:15
L5

Compactness results for minimal hypersurfaces with bounded index

Reto Buzano
(Queen Mary University London)
Abstract

First, we will discuss sequences of closed minimal hypersurfaces (in closed Riemannian manifolds of dimension up to 7) that have uniformly bounded index and area. In particular, we explain a bubbling result which yields a bound on the total curvature along the sequence and, as a consequence, topological control in terms of index and area. We then specialise to minimal surfaces in ambient manifolds of dimension 3, where we use the bubbling analysis to obtain smooth multiplicity-one convergence under bounds on the index and genus. This is joint work with Lucas Ambrozio, Alessandro Carlotto, and Ben Sharp

Mon, 22 Jan 2018

14:15 - 15:15
L5

Geometry of subrings

Brent Doran
(Oxford)
Abstract

 The basic algebra-geometry dictionary for finitely generated k-algebras is one of the triumphs of 19th and early 20th century mathematics.  However, classes of related rings, such as their k-subalgebras, lack clean general properties or organizing principles, even when they arise naturally in problems of smooth projective geometry.  “Stabilization” in smooth topology and symplectic geometry, achieved by products with Euclidean space, substantially simplifies many
problems.  We discuss an analog in the more rigid setting of algebraic and arithmetic geometry, which, among other things (e.g., applications to counting rational points), gives some structure to the study of k-subalgebras.  We focus on the case of the moduli space of stable rational n-pointed curves to illustrate.

 

Mon, 04 Dec 2017
14:15
L5

Floer homology, group orders, and taut foliations of hyperbolic 3-manifolds

Nathan Dunfield
(Illinois at Urbana-Champaign)
Abstract

A bold conjecture of Boyer-Gorden-Watson and others posit that for any irreducible rational homology 3-sphere M the following three conditions are equivalent: (1) the fundamental group of M is left-orderable, (2) M has non-minimal Heegaard Floer homology, and (3) M admits a co-orientable taut foliation. Very recently, this conjecture was established for all graph manifolds by the combined work of Boyer-Clay and Hanselman-Rasmussen-Rasmussen-Watson. I will discuss a computational survey of these properties involving half a million hyperbolic 3-manifolds, including new or at least improved techniques for computing each of these properties.
 

Mon, 06 Nov 2017
14:15
L5

An obstruction to planarity of contact structures

Marco Golla
(Oxford)
Abstract


We give new obstructions to the existence of planar open books on contact structures, in terms of the homology of their fillings. I will talk about applications to links of surface singularities, Seifert fibred spaces, and integer homology spheres. No prior knowledge of contact or symplectic topology will be assumed. This is joint work with Paolo Ghiggini and Olga Plamenevskaya.
 

Mon, 09 Oct 2017

14:15 - 15:15
L4

Morse inequalities for arbitrary smooth functions

Frances Kirwan
(Oxford)
Abstract

A Morse function (and more generally a Morse-Bott function) on a compact manifold M has associated Morse inequalities. The aim of this
talk is to explain how we can associate Morse inequalities to any smooth function on M (reporting on work of/with G Penington).

 

Mon, 13 Nov 2017

14:15 - 15:15
L5

Surface homeomorphisms and their lifts by covering maps

Mehdi Yazdi
(Oxford)
Abstract

A generic surface homeomorphism (up to isotopy) is what we call it pseudo-Anosov. These maps come equipped with an algebraic integer that measures
how much the map stretches/shrinks in different direction, called the stretch factor. Given a surface homeomorsphism, one can ask if it is the lift (by a branched or unbranched cover) of another homeomorphism on a simpler surface possibly of small genus. Farb conjectured that if the algebraic degree of the stretch factor is bounded above, then the map can be obtained by lifting another homeomorphism on a surface of bounded genus.
This was known to be true for quadratic algebraic integers by a Theorem of Franks-Rykken. We construct counterexamples to Farb's conjecture.

 

Mon, 30 Oct 2017

14:15 - 15:15
L5

Almost Kähler 4-manifolds of Constant Holomorphic Sectional Curvature are Kähler

Markus Upmeier
(Oxford)
Abstract

We show that a closed almost Kähler 4-manifold of globally constant holomorphic sectional curvature k<=0 with respect to the canonical Hermitian connection is automatically Kähler. The same result holds for k < 0 if we require in addition that the Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern–Weil theory implies useful integral formulas, which are then combined with results from Seiberg–Witten theory.

Mon, 23 Oct 2017

14:15 - 15:15
L5

Cubic fourfolds, K3 surfaces, and mirror symmetry

Nicholas Sheridan
(Cambridge)
Abstract

While many cubic fourfolds are known to be rational, it is expected that the very general cubic fourfold is irrational (although none have been
proven to be so). There is a conjecture for precisely which cubics are rational, which can be expressed in Hodge-theoretic terms (by work of Hassett)
or in terms of derived categories (by work of Kuznetsov). The conjecture can be phrased as saying that one can associate a `noncommutative K3 surface' to any cubic fourfold, and the rational ones are precisely those for which this noncommutative K3 is `geometric', i.e., equivalent to an honest K3 surface. It turns out that the noncommutative K3 associated to a cubic fourfold has a conjectural symplectic mirror (due to  Batyrev-Borisov). In contrast to the algebraic side of the story, the mirror is always `geometric': i.e., it is always just an honest K3 surface equipped with an appropriate Kähler form. After explaining this background, I will state a theorem: homological mirror symmetry holds in this context (joint work with Ivan Smith).

 

Mon, 16 Oct 2017

14:15 - 15:15
L5

Complete non-compact G2-manifolds from asymptotically conical Calabi-Yau 3-folds

Lorenzo Foscolo
(Heriot Watt University)
Abstract

G2-manifolds are the Riemannian 7-manifolds with G2 holonomy and in many respects can be regarded as 7-dimensional analogues of Calabi-Yau 3-folds.
In joint work with Mark Haskins and Johannes Nordström we construct infinitely many families of new complete non-compact G2 manifolds (only four such manifolds were previously known). The underlying smooth 7-manifolds are all circle bundles over asymptotically conical Calabi-Yau 3-folds. The metrics are circle-invariant and have an asymptotic geometry that is the 7-dimensional analogue of the geometry of 4-dimensional ALF hyperkähler metrics. After describing the main features of our construction I will concentrate on some illustrative examples, describing how results in Calabi-Yau geometry about isolated singularities and their resolutions can be used to produce examples of complete G2-manifolds.

 

Mon, 20 Nov 2017

14:15 - 15:15
L5

In search of the extended Kac-Moody Lie algebra

Ben Davison
(University of Glasgow)
Abstract

Associated to a finite graph without loops is the Kac-Moody Lie algebra for the Cartan matrix whose off diagonal entries are (minus) the adjacency matrix for the graph.  Two famous conjectures of Kac, proved by Hausel, Letellier and Villegas, hint that there may be some larger cohomologically graded algebra associated to the graph (even if there are loops), providing "higher" Kac moody Lie algebras, or at least their positive halves.  Using work with Sven Meinhardt, I will give a geometric construction of the (full) Kac-Moody algebra for a general finite graph, using cohomological DT theory.  Along the way we'll see a proof of the positivity conjecture for the modified Kac polynomials of Bozec, Schiffmann and Vasserot counting various types of representations of quivers.

 

Subscribe to Geometry and Analysis Seminar