Research group
Geometry
Mon, 24 Apr 2017

14:15 - 15:15
L4

Soliton resolution conjecture

Roland Grinis
(Oxford)
Abstract

We will give an overview of the Soliton Resolution Conjecture, focusing mainly on the Wave Maps Equation. This is a program about understanding the formation of singularities for a variety of critical hyperbolic/dispersive equations, and stands as a remarkable topic of research in modern PDE theory and Mathematical Physics. We will be presenting our contributions to this field, elaborating on the required background, as well as discussing some of the latest results by various authors.

Mon, 12 Jun 2017

14:15 - 15:15
L4

Mapping Class Group Actions on Moduli Spaces and the Teichmueller Flow

Bill Goldman
(University of Maryland)
Abstract

We describe a general program for the classification of flat connections on topological manifolds. This is motivated by the classification of locally homogeneous geometric structures on manifolds, in the spirit of Ehresmann and Thurston.  This leads to interesting dynamical systems arising from mapping class group actions on character varieties. The mapping class group action is a discrete version of a continuous object, namely the extension of the Teichmueller flow to a  unversal character variety over over the tangent bundle of Teichmuller space. We give several examples of this construction
and discuss joint work with Giovanni Forni on a mixing property of this suspended flow.

Mon, 22 May 2017

14:15 - 15:15
L4

Kahler configurations of points

Simon Salamon
(Kings College London)
Abstract

I shall discuss Zauner's conjecture about the existence of n^2 mutually equidistant points in complex projective space CP^{n-1} with its standard Fubini-Study metric. This is the so-called SIC-POVM problem, and is related to properties of the moment mapping that embeds CP^{n-1} into the Lie algebra su(n). In the case n=3, there is an obvious 1-parameter family of such sets of 9 points under the action of SU(3) and we shall sketch a proof that there are no others. This is joint work with Lane Hughston.

 

Mon, 15 May 2017

14:15 - 15:15
L4

Higgs bundles, Lagrangians and mirror symmetry.

Lucas Branco
(Oxford)
Abstract

The moduli space M(G) of Higgs bundles for a complex reductive group G on a compact Riemann surface carries a natural hyperkahler structure and it comes equipped with an algebraically completely integrable system through a flat projective morphism called the Hitchin map. Motivated by mirror symmetry, I will discuss certain complex Lagrangians (BAA-branes) in M(G) coming from real forms of G and give a proposal for the mirror (BBB-brane) in the moduli space of Higgs bundles for the Langlands dual group of G.  In this talk, I will focus on the real groups SU^*(2m), SO^*(4m) and Sp(m,m). The image under the Hitchin map of Higgs bundles for these groups is completely contained in the discriminant locus of the base and our analysis is carried out by describing the whole
(singular) fibres they intersect. These turn out to be certain subvarieties of the moduli space of rank 1 torsion-free sheaves on a non-reduced curve. If time permits we will also discuss another class of complex Lagrangians in M(G) which can be constructed from symplectic representations of G.

 

Mon, 08 May 2017

14:15 - 15:15
L4

The moduli space of Higgs bundles over a real curve and the real Abel-Jacobi map

Tom Baird
(Memorial University of Newfoundland)
Abstract

The moduli space M_C of Higgs bundles over a complex curve X admits a hyperkaehler metric: a Riemannian metric which is Kaehler with respect to three different complex structures I, J, K, satisfying the quaternionic relations. If X admits an anti-holomorphic involution, then there is an induced involution on M_C which is anti-holomorphic with respect to I and J, and holomorphic with respect to K. The fixed point set of this involution, M_R, is therefore a real
Lagrangian submanifold with respect to I and J, and complex symplectic with respect to K, making it a so called AAB-brane. In this talk, I will explain how to compute the mod 2 Betti numbers of M_R using Morse theory. A key role in this calculation is played by the Abel-Jacobi map from symmetric products of X to the Jacobian of X.

Mon, 01 May 2017

14:15 - 15:15
L4

E-polynomials of character varieties and applications

Marina Logares
(Plymouth)
Abstract

Character varieties have been studied largely by means of their correspondence to the moduli space of Higgs bundles. In this talk we will report on a method to study their Hodge structure, in particular to compute their E- polynomials. Moreover, we will explain some applications of the given method such as, the study of the topology of the moduli space of doubly periodic instantons. This is joint work with A. González, V.Muñoz and P. Newstead.

 

Mon, 06 Mar 2017

14:15 - 15:15
L4

Moduli spaces of instanton sheaves on projective space

Marcos Jardim
(Campinas (visiting Edinburgh))
Abstract

Instanton bundles were introduced by Atiyah, Drinfeld, Hitchin and Manin in the late 1970s as the holomorphic counterparts, via twistor
theory, to anti-self-dual connections (a.k.a. instantons) on the sphere S^4. We will revise some recent results regarding some of the basic
geometrical features of their moduli spaces, and on its possible degenerations. We will describe the singular loci of instanton sheaves,
and how these lead to new irreducible components of the moduli space of stable sheaves on the projective space.

Mon, 27 Feb 2017

14:15 - 15:15
L4

Singularities of Lagrangian Mean Curvature Flow

Yng-Ing Lee
(National Taiwan University (visiting Oxford))
Abstract

Mean Curvature Flow (MCF) is a canonical way to deform sub-manifolds to minimal sub-manifolds. It also improves the geometric properties of sub-manifolds along the flow. The condition of being Lagrangian is preserved for smooth solutions of MCF in a Kahler-Einstein manifold. We call it Lagrangian mean curvature flow (LMCF) when requires slices of the flow to be Lagrangian.

Unfortunately, singularities may occur and cause obstructions to continue MCF in general. It is thus very important to understand the singularities, particularly isolated singularities of the flow. Isolated singularity models on soliton solutions that include self-similar solutions and translating solutions. In this talk, I will report some of my work with my collaborators on studying singularities of LMCF. It includes soliton solutions with different important properties and an in-progress joint project with Dominic Joyce that aims to understand how singularities form and construct examples to demonstrate these behaviours.

 

Mon, 20 Feb 2017

14:15 - 15:15
L4

The symplectic geometry of twistor spaces

Joel Fine
(Universite Libre de Bruxelles)
Abstract

Twistor spaces were originally devised as a way to use techniques of complex geometry to study 4-dimensional Riemannian manifolds. In this talk I will show that they also make it possible to apply techniques from symplectic geometry.  In the first part of the talk I will explain that when the 4-manifold satisfies a certain curvature inequality, its twistor space carries a natural symplectic structure. In the second part of the talk I will discuss some results in Riemannian geometry which can be proved via the symplectic geometry of the twistor space. Finally, if there is time, I will end with some speculation
about potential future applications, involving Poincaré—Einstein 4-manifolds, minimal surfaces and distinguished closed curves in their conformal infinities

Mon, 13 Feb 2017

14:15 - 15:15
L4

Gauge Theory and Symplectic Duality

Matt Bullimore
(Oxford)
Abstract

Symplectic duality is an equivalence of mathematical structures associated to pairs of hyper-Kahler cones. All known examples arise as the `Higgs branch’ and `Coulomb branch' of a 3d superconformal quantum field theory. In particular, there is a rich class of examples where the Higgs branch is a Nakajima quiver variety and the Coulomb branch is a moduli spaceof singular magnetic monopoles. In this case, I will show that the equivariant cohomology of the moduli space of based quasi-maps to the Higgs branch transforms as a Verma module for the deformation quantisation of the Coulomb branch

Subscribe to Geometry and Analysis Seminar