Research group
Geometry
Mon, 23 May 2016
14:15
L4

Poncelet's theorem and Painleve VI

Vasilisa Shramchenko
(Universite de Sherbrooke)
Abstract

In 1995 N. Hitchin constructed explicit algebraic solutions to the Painlevé VI (1/8,-1/8,1/8,3/8) equation starting with any Poncelet trajectory, that is a closed billiard trajectory inscribed in a conic and circumscribed about another conic. In this talk I will show that Hitchin's construction is the Okamoto transformation between Picard's solution and the general solution of the Painlevé VI (1/8,-1/8,1/8,3/8) equation. Moreover, this Okamoto transformation can be written in terms of an Abelian differential of the third kind on the associated elliptic curve, which allows to write down solutions to the corresponding Schlesinger system in terms of this differential as well. This is a joint work with V. Dragovic.

Mon, 06 Jun 2016
14:15
L4

Obstructions to positive scalar curvature via submanifolds of different codimension

Thomas Schick
(Gottingen)
Abstract

Question: Given a smooth compact manifold $M$ without boundary, does $M$
 admit a Riemannian metric of positive scalar curvature?

 We focus on the case of spin manifolds. The spin structure, together with a
 chosen Riemannian metric, allows to construct a specific geometric
 differential operator, called Dirac operator. If the metric has positive
 scalar curvature, then 0 is not in the spectrum of this operator; this in
 turn implies that a topological invariant, the index, vanishes.

  We use a refined version, acting on sections of a bundle of modules over a
 $C^*$-algebra; and then the index takes values in the K-theory of this
 algebra. This index is the image under the Baum-Connes assembly map of a
 topological object, the K-theoretic fundamental class.

 The talk will present results of the following type:

 If $M$ has a submanifold $N$ of codimension $k$ whose Dirac operator has
 non-trivial index, what conditions imply that $M$ does not admit a metric of
 positive scalar curvature? How is this related to the Baum-Connes assembly
 map? 

 We will present previous results of Zeidler ($k=1$), Hanke-Pape-S. ($k=2$),
 Engel and new generalizations. Moreover, we will show how these results fit
 in the context of the Baum-Connes assembly maps for the manifold and the
 submanifold. 
 

Mon, 25 Apr 2016
14:15
L4

K-contact & Sasakian manifolds of dimension 5

Vicente Muñoz
(Universidad Complutense de Madrid)
Abstract

Sasakian manifolds are odd-dimensional counterparts of Kahler manifolds in even dimensions, 
with K-contact manifolds corresponding to symplectic manifolds. It is an interesting problem to find
obstructions for a closed manifold to admit such types of structures and in particular, to construct
K-contact manifolds which do not admit Sasakian structures. In the simply-connected case, the
hardest dimension is 5, where Kollar has found subtle obstructions to the existence of Sasakian 
structures, associated to the theory of algebraic surfaces.
In this talk, we develop methods to distinguish K-contact manifolds from Sasakian ones in 
dimension 5. In particular, we find the first example of a closed 5-manifold with first Betti number 0 which is K-contact but which carries no semi-regular Sasakian structure.

 (Joint work with J.A. Rojo and A. Tralle).

Mon, 15 Feb 2016
14:15
L4

Generalized Kähler structures from a holomorphic Poisson viewpoint

Marco Gualtieri
(Toronto)
Abstract

After reviewing the main results relating holomorphic Poisson geometry to generalized Kahler structures, I will explain some recent progress in deforming generalized Kahler structures. I will also describe a new way to view generalized kahler geometry purely in terms of Poisson structures.

Mon, 29 Feb 2016
14:15
L4

The topology of area-minimizing surfaces in manifolds of non-negative curvature

Otis Chodosh
(Cambridge)
Abstract

Work of Schoen--Yau in the 70's/80's shows that area-minimizing (actually stable) two-sided surfaces in three-manifolds of non-negative scalar curvature are of a special topological type: a sphere, torus, plane or cylinder. The torus and cylinder cases are "borderline" for this estimate. It was shown by Cai--Galloway in the late 80's that the torus can only occur in a very special ambient three manifold. We complete the story by showing that a similar result holds for the cylinder. The talk should be accessible to those with a basic knowledge of curvature in Riemannian geometry.

Mon, 22 Feb 2016
14:15
L4

The Gromoll filtration, Toda brackets and positive scalar curvature

OAC-manifolds meeting: Diarmuid Crowley
(Aberdeen)
Abstract
An exotic (n+1)-sphere has disc of origin D^k if k is the smallest integer such that some clutching diffeomorphism of the n-disc which builds the exotic sphere can be written as an (n-k)-parameter family of diffeomorphisms of the k-disc.
 
In this talk I will present a new method for constructing exotic spheres with small disc of origin via Toda brackets.  
 
This method gives exotic spheres in all dimensions 8j+1 and 8j+2 with disc of origin 6 and with Dirac operators of non-zero index (such spheres are often called "Hitchin spheres").
 
I will also briefly discuss implications of our results for the space of positive scalar curvature metrics on spin manifolds of dimension 6 and higher, and in particular the relationship of this project to the work of Botvinnik, Ebert and Randal-Williams.
 
This is part of joint work with Thomas Schick and Wolfgang Steimle.
Subscribe to Geometry and Analysis Seminar