Research group
Geometry
Mon, 29 May 2023
14:15
L4

Higher algebra of $A_\infty$-algebras in Morse theory

Thibaut Mazuir
(Humboldt Universität zu Berlin)
Abstract

In this talk, I will introduce the notion of $n$-morphisms between two $A_\infty$-algebras. These higher morphisms are such that 0-morphisms correspond to standard $A_\infty$-morphisms and 1-morphisms correspond to $A_\infty$-homotopies. Their combinatorics are encoded by new families of polytopes,  which I call the $n$-multiplihedra and which generalize the standard multiplihedra.
Elaborating on works by Abouzaid and Mescher, I will then explain how this higher algebra of $A_\infty$-algebras naturally arises in the context of Morse theory, using moduli spaces of perturbed Morse gradient trees.

Mon, 22 May 2023
14:15
L4

Stability of weak Cayley fibrations

Gilles Englebert
(University of Oxford)
Abstract

The SYZ conjecture is a geometric way of understanding mirror symmetry via the existence of dual special Lagrangian fibrations on mirror Calabi-Yau manifolds. Motivated by this conjecture, it is expected that $G_2$ and $Spin(7)$-manifolds admit calibrated fibrations as well. I will explain how to construct examples of a weaker type of fibration on compact $Spin(7)$-manifolds obtained via gluing, and give a hint as to why the stronger fibrations are still elusive. The key ingredient is the stability of the weak fibration property under deformation of the ambient $Spin(7)$-structure.

Mon, 15 May 2023
14:15
L4

Degenerating conic Kähler-Einstein metrics

Henri Guenancia
(CNRS / Institut de Mathématiques de Toulouse)
Abstract

I will discuss a joint work with Olivier Biquard about degenerating conic Kähler-Einstein metrics by letting the cone angle go to zero. In the case where one is given a smooth anticanonical divisor $D$ in a Fano manifold $X$, I will explain how the complete Ricci flat Tian-Yau metric on $X \smallsetminus D$ appears as rescaled limit of such conic KE metrics. 

Mon, 08 May 2023
14:15
L4

The differential geometry of four-dimensional Abelian gauge theory: a new notion of self-duality?

Carlos Shahbazi
(UNED - Madrid)
Abstract

I will construct the differential geometric, gauge-theoretic, and duality covariant model of classical four-dimensional Abelian gauge theory on an orientable four-manifold of arbitrary topology. I will do so by implementing the Dirac-Schwinger-Zwanziger (DSZ) integrality condition in classical Abelian gauge theories with general duality structure and interpreting the associated sheaf cohomology groups geometrically. As a result, I will obtain that four-dimensional Abelian gauge theories are theories of connections on Siegel bundles, namely principal bundles whose structure group is the generically non-abelian disconnected group of automorphisms of an integral affine symplectic torus. This differential-geometric model includes the electric and magnetic gauge potentials on an equal footing and describes the equations of motion through a first-order polarized self-duality condition for the curvature of a connection. This condition is reminiscent of the theory of four-dimensional Euclidean instantons, even though we consider a two-derivative theory in Lorentzian signature. Finally, I will elaborate on various applications of this differential-geometric model, including a mathematically rigorous description of electromagnetic duality in Abelian gauge theory and the reduction of the polarized self-duality condition to a Riemannian three-manifold, which gives as a result a new type of Bogomolny equation.

Mon, 01 May 2023
14:15
L4

Morse theory on moduli spaces of pairs and the Bogomolov-Miyaoka-Yau inequality

Paul Feehan
(Rutgers University)
Abstract

We describe an approach to Bialynicki-Birula theory for holomorphic $\mathbb{C}^*$ actions on complex analytic spaces and Morse-Bott theory for Hamiltonian functions for the induced circle actions. A key principle is that positivity of a suitably defined "virtual Morse-Bott index" at a critical point of the Hamiltonian function implies that the critical point cannot be a local minimum even when it is a singular point in the moduli space. Inspired by Hitchin’s 1987 study of the moduli space of Higgs monopoles over Riemann surfaces, we apply our method in the context of the moduli space of non-Abelian monopoles or, equivalently, stable holomorphic pairs over a closed, complex, Kaehler surface. We use the Hirzebruch-Riemann-Roch Theorem to compute virtual Morse-Bott indices of all critical strata (Seiberg-Witten moduli subspaces) and show that these indices are positive in a setting motivated by a conjecture that all closed, smooth four-manifolds of Seiberg-Witten simple type (including symplectic four-manifolds) obey the Bogomolov-Miyaoka-Yau inequality.

Mon, 24 Apr 2023
14:15
L4

Non-Archimedean Green's functions

Sébastien Boucksom
(CNRS / Institut de Mathématiques de Jussieu-Paris Rive Gauche)
Abstract

Pluripotential theory studies plurisubharmonic functions and complex Monge-Ampère equations on complex manifolds, and has played a key role in recent progress on Kähler-Einstein and constant scalar curvature Kähler metrics. This theory admits a non-Archimedean analogue over Berkovich spaces, that can be used to study K-stability. The purpose of this talk is to provide an introduction to this circle of ideas, and to discuss more specifically recent joint work with Mattias Jonsson studying Green's functions in this context.

Mon, 13 Mar 2023
14:15
L4

Categorical and K-theoretic Donaldson-Thomas theory of $\mathbb{C}^3$

Tudor Pădurariu
(Columbia University)
Abstract

Donaldson-Thomas theory associates integers (which are virtual counts of sheaves) to a Calabi-Yau threefold X. The simplest example is that of $\mathbb{C}^3$, when the Donaldson-Thomas (DT) invariant of sheaves of zero dimensional support and length d is $p(d)$, the number of plane partitions of $d$. The DT invariants have several refinements, for example a cohomological one, where instead of a DT invariant, one studies a graded vector space with Euler characteristic equal to the DT invariant. I will talk about two other refinements (categorical and K-theoretic) of DT invariants, focusing on the explicit case of $\mathbb{C}^3$. In particular, we show that the K-theoretic DT invariant for $d$ points on $\mathbb{C}^3$ also equals $p(d)$. This is joint work with Yukinobu Toda.

Tue, 07 Feb 2023
15:30
L4

Constant Scalar Curvature Metrics on Algebraic Manifolds (Part II)

Sean Timothy Paul
(University of Wisconsin Madison)
Abstract

According to the Yau-Tian-Donaldson conjecture, the existence of a constant scalar curvature Kähler (cscK) metric in the cohomology class of an ample line bundle $L$ on a compact complex manifold $X$ should be equivalent to an algebro-geometric "stability condition" satisfied by the pair $(X,L)$. The cscK metrics are the critical points of Mabuchi's $K$-energy functional $M$, defined on the space of Kähler potentials, and an important result of Chen-Cheng shows that cscK metrics exist iff $M$ satisfies a standard growth condition (coercivity/properness). Recently the speaker has shown that the $K$-energy is indeed proper if and only if the polarized manifold is stable. The stability condition is closely related to the classical notion of Hilbert-Mumford stability. The speaker will give a non-technical account of the many areas of mathematics that are involved in the proof. In particular, he hopes to discuss the surprising role played by arithmetic geometry ​in the spirit of Arakelov, Faltings, and Bismut-Gillet-Soule.

Mon, 20 Mar 2023
14:15
L3

The asymptotic geometry of the Hitchin moduli space

Laura Fredrickson
(University of Oregon)
Abstract

Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmüller theory, and the geometric Langlands correspondence. The Hitchin moduli space carries a natural hyperkähler metric.  An intricate conjectural description of its asymptotic structure appears in the work of Gaiotto-Moore-Neitzke and there has been a lot of progress on this recently.  I will discuss some recent results using tools coming out of geometric analysis which are well-suited for verifying these extremely delicate conjectures. This strategy often stretches the limits of what can currently be done via geometric analysis, and simultaneously leads to new insights into these conjectures.

Mon, 06 Mar 2023
14:15
L4

Phase transitions with Allen-Cahn mean curvature bounded in $L^p$.

Shengwen Wang
(Queen Mary University)
Abstract

We consider the varifolds associated to phase transitions whose first variation of Allen-Cahn energy is $L^p$ integrable with respect to the energy measure. We can see that the Dirichlet and potential part of the energy are almost equidistributed. After passing to the phase field limit, one can obtain an integer rectifiable varifold with bounded $L^p$ mean curvature. This is joint work with Huy Nguyen.

Subscribe to Geometry and Analysis Seminar