Research group
Geometry
Mon, 20 Mar 2023
14:15
L3

The asymptotic geometry of the Hitchin moduli space

Laura Fredrickson
(University of Oregon)
Abstract

Hitchin's equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmüller theory, and the geometric Langlands correspondence. The Hitchin moduli space carries a natural hyperkähler metric.  An intricate conjectural description of its asymptotic structure appears in the work of Gaiotto-Moore-Neitzke and there has been a lot of progress on this recently.  I will discuss some recent results using tools coming out of geometric analysis which are well-suited for verifying these extremely delicate conjectures. This strategy often stretches the limits of what can currently be done via geometric analysis, and simultaneously leads to new insights into these conjectures.

Mon, 06 Mar 2023
14:15
L4

Phase transitions with Allen-Cahn mean curvature bounded in $L^p$.

Shengwen Wang
(Queen Mary University)
Abstract

We consider the varifolds associated to phase transitions whose first variation of Allen-Cahn energy is $L^p$ integrable with respect to the energy measure. We can see that the Dirichlet and potential part of the energy are almost equidistributed. After passing to the phase field limit, one can obtain an integer rectifiable varifold with bounded $L^p$ mean curvature. This is joint work with Huy Nguyen.

Mon, 27 Feb 2023
14:15
L4

Equivariant Fukaya categories at singular values

Yankı Lekili
(Imperial College, London)
Abstract

It is well understood by works of Fukaya and Teleman that the Fukaya category of a symplectic reduction at a regular value of the moment map can be computed before taking the quotient as an equivariant Fukaya category. Informed by mirror calculations,  we will give a new geometric interpretation of the equivariant Fukaya category corresponding to a singular value of the moment map where the equivariance is traded with wrapping.

Joint work in progress with Ed Segal.

Mon, 13 Feb 2023
14:15
L4

Some glueing constructions in Lagrangian mean curvature flow

Wei-Bo Su
(University of Warwick)
Abstract

Glueing construction has been used extensively to construct solutions to nonlinear geometric PDEs. In this talk, I will focus on the glueing construction of solutions to Lagrangian mean curvature flow. Specifically, I will explain the construction of Lagrangian translating solitons by glueing a small special Lagrangian 'Lawlor neck' into the intersection point of suitably rotated Lagrangian Grim Reaper cylinders. I will also discuss an ongoing joint project with Chung-Jun Tsai and Albert Wood, where we investigate the construction of solutions to Lagrangian mean curvature flow with infinite time singularities.

Mon, 30 Jan 2023
14:15
L4

Mirror symmetry and big algebras

Tamas Hausel
(IST Austria)
Abstract

First we recall the mirror symmetry identification of the coordinate ring of certain very stable upward flows in the Hitchin system and the Kirillov algebra for the minuscule representation of the Langlands dual group via the equivariant cohomology of the cominuscule flag variety (e.g. complex Grassmannian). In turn we discuss a conjectural extension of this picture to non-very stable upward flows in terms of a big commutative subalgebra of the Kirillov algebra, which also ringifies the equivariant intersection cohomology of the corresponding affine Schubert variety.

Mon, 23 Jan 2023
14:15
L4

Compactified Universal Jacobians over $\overline{\mathcal{M}}_{g,n}$ via GIT

George Cooper
(Oxford University)
Abstract

Associated to any smooth projective curve C is its degree d Jacobian variety, parametrising isomorphism classes of degree d line bundles on C. Letting the curve vary as well, one is led to the universal Jacobian stack. This stack admits several compactifications over the stack of marked stable curves $\overline{\mathcal{M}}_{g,n}$, depending on the choice of a stability condition. In this talk I will introduce these compactified universal Jacobians, and explain how their moduli spaces can be constructed using Geometric Invariant Theory (GIT). This talk is based on arXiv:2210.11457.

Mon, 16 Jan 2023
14:15
L4

Trivector fields on moduli spaces

Nigel Hitchin
(Oxford University)
Abstract

The moduli space M of stable bundles on a Riemann surface possesses a natural family of holomorphic trivector fields. The talk will introduce these objects with examples and then use them to gain information about the Hochschild cohomology of M.

Mon, 06 Feb 2023
14:15
L4

Constant Scalar Curvature Metrics on Algebraic Manifolds

Sean Timothy Paul
(University of Wisconsin Madison)
Abstract

According to the Yau-Tian-Donaldson conjecture, the existence of a constant scalar curvature Kähler (cscK) metric in the cohomology class of an ample line bundle $L$ on a compact complex manifold $X$ should be equivalent to an algebro-geometric "stability condition" satisfied by the pair $(X,L)$. The cscK metrics are the critical points of Mabuchi's $K$-energy functional $M$, defined on the space of Kähler potentials, and an important result of Chen-Cheng shows that cscK metrics exist iff $M$ satisfies a standard growth condition (coercivity/properness). Recently the speaker has shown that the $K$-energy is indeed proper if and only if the polarized manifold is stable. The stability condition is closely related to the classical notion of Hilbert-Mumford stability. The speaker will give a non-technical account of the many areas of mathematics that are involved in the proof. In particular, he hopes to discuss the surprising role played by arithmetic geometry ​in the spirit of Arakelov, Faltings, and Bismut-Gillet-Soule.

Mon, 28 Nov 2022
14:15
L5

Monotonicity theorems and how to compare them

Manh Tien Nguyen
(Oxford University)
Abstract

I will present two new results. The first concerns minimal surfaces of the hyperbolic space and is a relation between their renormalised area (in the sense of Graham and Witten) and the length of their ideal boundary measured in different metrics of the conformal infinity. The second result concerns minimal submanifolds of the sphere and is a relation between their volume and antipodal-ness. Both results were obtained from the same framework, which involves new monotonicity theorems and a comparison principle for them. If time permits, I will discuss how to use these to answer questions about uniqueness and non-existence of minimal surfaces.

Subscribe to Geometry and Analysis Seminar