Fri, 10 Mar 2023
16:00
L1

Opportunities Outside of Academia and Navigating the Transition to Industry - Modelling Climate Change at RMS Moody's

Dr Keven Roy
Abstract

Dr. Keven Roy from RMS Moody's Analytics (who are currently hiring!) will share his experience of transitioning from academia to industry, discussing his fascinating work in modelling climate change and how his mathematical background has helped him succeed in industry. After the approximately 20-minute talk, we'll hold a Q&A session to discuss the importance of considering industry in your job search. Aimed primarily at PhD students and postdocs, this session will explore options beyond academia that can provide a fulfilling career (as well as good work-life balance, and financial compensation!).

Join us for a thought-provoking discussion at Fridays@4 to expand your career horizons and help you make informed decisions about your future. There will be lots of time for Q&A in this session, but if you have questions for Keven you can also send them in advance to Jess Crawshaw (session organiser) - @email.

Fri, 03 Mar 2023
16:00
L1

What makes a good academic discussion? A panel event

Chair: Ian Hewitt (Associate HoD (People)) Panel: James Sparks (HoD); Helen Byrne (winner of MPLS Outstanding Supervisor Awards for 2022); Ali Goodall (Head of Faculty Services and HR); and Matija Tapuskovic (EPSRC Postdoctoral Research Fellow)
Abstract

Chair: Ian Hewitt (Associate HoD (People))

Panel:
James Sparks (Head of Department)
Helen Byrne (winner of MPLS Outstanding Supervisor Awards for 2022)
Ali Goodall (Head of Faculty Services and HR)
Matija Tapuskovic (EPSRC Postdoctoral Research Fellow and JRF at Corpus Christi)

Scientific discussions with colleagues, at conferences and seminars, during supervisions and collaborations, are a crucial part of our research process. How can we ensure our academic discussions are fruitful, respectful, and a positive experience for everyone involved? What factors and power dynamics can impact our conversations? How can we make sure everyone’s voice is heard and respected? This panel discussion will probe these questions and encourage us all to reflect on how we approach our academic discussions.

Fri, 17 Feb 2023
16:00
L1

Introducing Entrepreneurship, Commercialisation and Consultancy

Paul Gass and Dawn Gordon
Abstract

This session will introduce the opportunities for entrepreneurship and generating commercial impact available to researchers and students across MPLS. Representatives from the Maths Institute and across the university will discuss training and resources to help you begin enterprising and develop your ideas. We will hear from Paul Gass and Dawn Gordon about the support that can be provided by Oxford University Innovation, discussing commercialisation of research findings, consultancy, utilising your expertise and the protection and licensing of Intellectual Property. 

Please see below slides from the talk:

20230217 Short Seminar - Maths Fri@4_FINAL- Dept (1)_0.pdf

Introductory talk Maths 2023.pdf

Leadership and Innovation Presentation.pdf

Fri, 20 Jan 2023
16:00
L1

Departmental Colloquium

Professor James Maynard
(Mathematical Institute (University of Oxford))
Further Information

Title: “Prime numbers: Techniques, results and questions”

Abstract

The basic question in prime number theory is to try to understand the number of primes in some interesting set of integers. Unfortunately many of the most basic and natural examples are famous open problems which are over 100 years old!

We aim to give an accessible survey of (a selection of) the main results and techniques in prime number theory. In particular we highlight progress on some of these famous problems, as well as a selection of our favourite problems for future progress.

Fri, 10 Feb 2023
16:00
L1

Mathematical models of curiosity

Professor Dani S Bassett
(J. Peter Skirkanich Professor, University of Pennsylvania)
Further Information

Dani Smith Bassett is an American physicist and systems neuroscientist who was the youngest individual to be awarded a 2014 MacArthur fellowship.

Bassett, whose pronouns are they/them,was also awarded a 2014 Sloan fellowship. They are currently the J. Peter Skirkanich Professor in the Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, Neurology, and Psychiatry at the University of Pennsylvania and an external professor of the Santa Fe Institute. Their work focuses on applying network science to the study of learning in the human brain in addition to the study of other complex physical and biological systems.

Wikipedia

Abstract

What is curiosity? Is it an emotion? A behavior? A cognitive process? Curiosity seems to be an abstract concept—like love, perhaps, or justice—far from the realm of those bits of nature that mathematics can possibly address. However, contrary to intuition, it turns out that the leading theories of curiosity are surprisingly amenable to formalization in the mathematics of network science. In this talk, I will unpack some of those theories, and show how they can be formalized in the mathematics of networks. Then, I will describe relevant data from human behavior and linguistic corpora, and ask which theories that data supports. Throughout, I will make a case for the position that individual and collective curiosity are both network building processes, providing a connective counterpoint to the common acquisitional account of curiosity in humans.

 

 

Tue, 10 Jan 2023
14:00
L1

Exact domain truncation for scattering problems

Robert Kirby
(Baylor University)
Abstract

While scattering problems are posed on unbounded domains, volumetric discretizations typically require truncating the domain at a finite distance, closing the system with some sort of boundary condition.  These conditions typically suffer from some deficiency, such as perturbing the boundary value problem to be solved or changing the character of the operator so that the discrete system is difficult to solve with iterative methods.

We introduce a new technique for the Helmholtz problem, based on using the Green formula representation of the solution at the artificial boundary.  Finite element discretization of the resulting system gives optimal convergence estimates.  The resulting algebraic system can be solved effectively with a matrix-free GMRES implementation, preconditioned with the local part of the operator.  Extensions to the Morse-Ingard problem, a coupled system of pressure/temperature equations arising in modeling trace gas sensors, will also be given.

Mon, 27 Feb 2023
13:00
L1

Towards Hodge-theoretic characterizations of 2d rational SCFTs

Taizan Watari
(Kavli IPMU)
Abstract

A 2d SCFT given as a non-linear sigma model of a Ricci-flat Kahler target 

space is not a rational CFT in general; only special points in the moduli 

space of the target-space metric, the 2d SCFTs are rational. 

Gukov-Vafa's paper in 2002 hinted at a possibility that such special points 

may be characterized by the property "complex multiplication" of the target space, 

which has its origin in number theory. We revisit the idea, refine the Conjecture, 

and prove it in the case the target space is T^4. 
 

This presentation is based on arXiv:2205.10299 and 2212.13028 .

Mon, 13 Feb 2023

15:30 - 16:30
L1

Stability of deep residual neural networks via discrete rough paths

Nikolas Tapia
Abstract

Using rough path techniques, we provide a priori estimates for the output of Deep Residual Neural Networks in terms of both the input data and the (trained) network weights. As trained network weights are typically very rough when seen as functions of the layer, we propose to derive stability bounds in terms of the total p-variation of trained weights for any p∈[1,3]. Unlike the C1-theory underlying the neural ODE literature, our estimates remain bounded even in the limiting case of weights behaving like Brownian motions, as suggested in [Cohen-Cont-Rossier-Xu, "Scaling Properties of Deep Residual Networks”, 2021]. Mathematically, we interpret residual neural network as solutions to (rough) difference equations, and analyse them based on recent results of discrete time signatures and rough path theory. Based on joint work with C. Bayer and P. K. Friz.
 

Thu, 09 Mar 2023

12:00 - 13:00
L1

TDA for the organization of regions in segmented images and more

Maria Jose Jimenez
(University of Seville)
Further Information

 

 

Abstract

Topological data analysis (TDA) comprises a set of techniques of computational topology that has had enormous growth in the last decade, with applications to a wide variety of fields, such as images,  biological data, meteorology, materials science, time-dependent data, economics, etc. In this talk, we will first have a walk through a typical pipeline in TDA, to move later to its adaptation to a specific context: the topological characterization of the spatial distribution of regions in a segmented image

Thu, 02 Mar 2023

12:00 - 13:00
L1

The Plankton Hydrodynamic Playbook

Christophe Eloy
(IRPHE Marseille)
Further Information

 

Christophe is Professor of Fluid Mechanics at Centrale Marseille. His research activity is carried out at the IRPHE institute in Marseille.

'His research addresses various fundamental problems of fluid and solid mechanics, including fluid-structure interactions, hydrodynamic instabilities, animal locomotion, aeroelasticity, rotating flows, and plant biomechanics. It generally involves a combination of analytical modeling, experiments, and numerical work.' (Taken from his website here: https://www.irphe.fr/~eloy/).'

 

 

Abstract

By definition, planktonic organisms drift with the water flows. But these millimetric organisms are not necessarily passive; many can swim and can sense the surrounding flow through mechanosensory hairs. But how useful can be flow sensing in a turbulent environment? To address this question, we show two examples of smart planktonic behavior: (1) we develop a model where plantkters choose a swimming direction as a function of the velocity gradient to "surf on turbulence" and move efficiently upwards; (2) we show how a plankter measuring the velocity gradient may track the position of a swimming target from its hydrodynamic signature. 

Ernst Haeckel, Kunstformen der Natur (1904), Copepoda 

 

Subscribe to L1