Mon, 10 Oct 2022

13:00 - 13:45
L1

Timelike Liouville gravity on the sphere and the disk

Teresa Bautista
(King's College London)
Abstract

Liouville conformal field theory models two-dimensional gravity with a cosmological constant and conformal matter. In its timelike regime, it reproduces the characteristic negative kinetic term of the conformal factor of the metric in the Einstein-Hilbert action, the sign which infamously makes the gravity path integral ill-defined. In this talk, I will first discuss the perturbative computation of the timelike Liouville partition function around the sphere saddle and propose an all-orders result. I will then turn to the disk and present the bulk 1-point functions of this CFT, and discuss possible interpretations in terms of boundary conditions.

Thu, 28 Apr 2022

12:00 - 13:00
L1

Modeling and Design Optimization for Pleated Membrane Filters

Yixuan Sun & Zhaohe Dai
(Mathematical Institute (University of Oxford))
Abstract

Statics and dynamics of droplets on lubricated surfaces

Zhaohe Dai

The abstract is "Slippery liquid infused porous surfaces are formed by coating surface with a thin layer of oil lubricant. This thin layer prevents other droplets from reaching the solid surface and allows such deposited droplets to move with ultra-low friction, leading to a range of applications. In this talk, we will discuss the static and dynamic behaviour of droplets placed on lubricated surfaces. We will show that the layer thickness and the size of the substrate are key parameters in determining the final equilibrium. However, the evolution towards the equilibrium is extremely slow (on the order of days for typical experimental parameter values). As a result, we suggest that most previous experiments with oil films lubricating smooth substrates are likely to have been in an evolving, albeit slowly evolving, transient state.

 

Modeling and Design Optimization for Pleated Membrane Filters

Yixuan Sun

Membrane filtration is widely used in many applications, ranging from industrial processes to everyday living activities. With growing interest from both industrial and academic sectors in understanding the various types of filtration processes in use, and in improving filter performance, the past few decades have seen significant research activity in this area. Experimental studies can be very valuable, but are expensive and time-consuming, therefore theoretical studies offer potential as a cost-effective and predictive way to improve on current filter designs. In this work, mathematical models, derived from first principles and simplified using asymptotic analysis, are proposed for pleated membrane filters, where the macroscale flow problem of Darcy flow through a pleated porous medium is coupled to the microscale fouling problem of particle transport and deposition within individual pores of the membrane. Asymptotically-simplified models are used to describe and evaluate the membrane performance numerically and filter design optimization problems are formulated and solved for industrially-relevant scenarios. This study demonstrates the potential of such modeling to guide industrial membrane filter design for a range of applications involving purification and separation.

Mon, 25 Apr 2022

12:45 - 13:45
L1

AdS Virasoro-Shapiro from dispersive sum rules

Joao Silva
(Oxford)
Abstract

We consider the four-point correlator of the stress-energy tensor in N=4 SYM, to leading order in inverse powers of the central charge, but including all order corrections in 1/lambda. This corresponds to the AdS version of the Virasoro-Shapiro amplitude to all orders in the small alpha'/low energy expansion. Using dispersion relations in Mellin space, we derive an infinite set of sum rules. These sum rules strongly constrain the form of the amplitude, and determine all coefficients in the low energy expansion in terms of the CFT data for heavy string operators, in principle available from integrability. For the first set of corrections to the flat space amplitude we find a unique solution consistent with the results from integrability and localisation.

Fri, 20 May 2022

16:00 - 18:30
L1

Guest Speakers Seminar

Prof. Luis Caffarelli and Prof. Irene Gamba
(University of Texas at Austin)
Further Information

Event Timings:

16:00 – 16:10 Refreshments (Served in the North Mezzanine)

16:10 – 17:10  Talk by Prof. Luis Caffarelli

17:10 – 17:30 Refreshments Break (20mins - Served in the North Mezzanine)

17:30 – 18:30 Talk by Prof Irene Martínez Gamba

Each talk will have a Q&A afterwards.

Register your interest HERE

Abstract

 

 

Title: Topics on regularity theory for fully non-linear integro-differential equations

Abstract: We will focus on local and non-local Monge Ampere type equations, equations with deforming kernels and convex envelopes of functions with optimal special conditions. We discuss global solutions and their regularity properties.

 

Title: Quasilinear Conservative Collisional Transport in Kinetic Mean Field models

AbstractWe shall focus the on the interplay of nonlinear analysis  and numerical approximations to mean field models in particle physics where kinetic transport flows in momentum are strongly nonlinearly  modified by macroscopic quantities in classical or spectral density spaces. Two noteworthy models arise: the classical Fokker-Plank Landau dynamics as a low magnetized plasma regimes in the modeling of perturbative non-local high order terms. The other one corresponds to perturbation under strongly magnetized dynamics for fast electrons  in momentum space  give raise to a coupled system of classical kinetic diffusion processes described by the balance equations for electron probability density functions (electron pdf) coupled to the time dynamics on spectral energy waves  (quasi-particles) in a quantum process of their resonant interaction. Both models are rather different, yet there are derived form the Liouville-Maxwell system under different scaling. Analytical tools and some numerical  simulations show a presence of  strong hot tail anisotropy  formation taking the stationary states away from Classical equilibrium solutions stabilization for the iteration in a three dimensional cylindrical model. The semi-discrete schemes preserves the total system mass, momentum and energy, which are enforced by the numerical scheme. Error estimates can be obtained as well.

Work in collaboration with Clark Pennie and Kun Huang

Tue, 31 May 2022

14:30 - 15:00
L1

Randomized algorithms for Tikhonov regularization in linear least squares

Maike Meier
((Oxford University))
Abstract

Regularization of linear least squares problems is necessary in a variety of contexts. However, the optimal regularization parameter is usually unknown a priori and is often to be determined in an ad hoc manner, which may involve solving the problem for multiple regularization parameters. In this talk, we will discuss three randomized algorithms, building on the sketch-and-precondition framework in randomized numerical linear algebra (RNLA), to efficiently solve this set of problems. In particular, we consider preconditioners for a set of Tikhonov regularization problems to be solved iteratively. The first algorithm is a Cholesky-based algorithm employing a single sketch for multiple parameters; the second algorithm is SVD-based and improves the computational complexity by requiring a single decomposition of the sketch for multiple parameters. Finally, we introduce an algorithm capable of exploiting low-rank structure (specifically, low statistical dimension), requiring a single sketch and a single decomposition to compute multiple preconditioners with low-rank structure. This algorithm avoids the Gram matrix, resulting in improved stability as compared to related work.

Tue, 31 May 2022

14:00 - 14:30
L1

Reinforcement learning for time-optimal vehicle control

Christoph Hoeppke
((Oxford University))
Abstract

Time-optimal control can be used to improve driving efficiency for autonomous
vehicles and it enables us explore vehicle and driver behaviour in extreme
situations. Due to the computational cost and limited scope of classical
optimal control methods we have seen new interest in applying reinforcement
learning algorithms to autonomous driving tasks.
In this talk we present methods for translating time-optimal vehicle control
problems into reinforcement learning environments. For this translation we
construct a sequence of environments, starting from the closest representation
of our optimisation problem, and gradually improve the environments reward
signal and feature quality. The trained agents we obtain are able to generalise
across different race tracks and obtain near optimal solutions, which can then
be used to speed up the solution of classical time-optimal control problems.

Tue, 17 May 2022

14:30 - 15:00
L1

Optimal control of bifurcation structures

Nicolas Boulle
((Oxford University))
Abstract

Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. In this talk, we will describe a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain or a parameter in the equation. Our aim is to delay or advance a given branch point to a target parameter value. The algorithm consists of solving an optimization problem constrained by an augmented system of equations that characterize the location of the branch points. The flexibility and robustness of the method also allow us to advance or delay a Hopf bifurcation to a target value of the bifurcation parameter, as well as controlling the oscillation frequency. We will apply this technique on systems arising from biology, fluid dynamics, and engineering, such as the FitzHugh-Nagumo model, Navier-Stokes, and hyperelasticity equations.

Fri, 29 Apr 2022

16:00 - 17:00
L1

North Meets South

Akshat Mugdal and Renee Hoekzema
Abstract
Speaker: Akshat Mugdal
 
Title: Fantastic arithmetic structures and where to find them
 
Abstract: This talk will be a gentle introduction to additive combinatorics, an area lying somewhat at the intersection of combinatorics, number theory and harmonic analysis, which concerns itself with identification and classification of sets with additive structure. In this talk, I will outline various notions of when a finite set of integers may be considered to be additively structured and how these different notions interconnect with each other, with various examples sprinkled throughout. I will provide some further applications and open problems surrounding this circle of ideas, including a quick study of sets that exhibit multiplicative structure and their interactions with the aforementioned notions of additivity.
 
 
Speaker: Renee Hoekzema 

Title: Exploring the space of genes in single cell transcriptomics datasets

Abstract: Single cell transcriptomics is a revolutionary technique in biology that allows for the measurement of gene expression levels across the genome for many individual cells simultaneously. Analysis of these vast datasets reveals variations in expression patterns between cells that were previously out of reach. On top of discrete clustering into cell types, continuous patterns of variation become visible, which are associated to differentiation pathways, cell cycle, response to treatment, adaptive heterogeneity or what just whatever the cells are doing at that moment. Current methods for assigning biological meaning to single cell experiments relies on predefining groups of cells and computing what genes are differentially expressed between them. The complexity found in modern single cell transcriptomics datasets calls for more intricate methods to biologically interpret both discrete clusters as well as continuous variations. We propose topologically-inspired data analysis methods that identify coherent gene expression patterns on multiple scales in the dataset. The multiscale methods consider discrete and continuous transcriptional patterns on equal footing based on the mathematics of spectral graph theory. As well as selecting important genes, the methodology allows one to visualise and explore the space of gene expression patterns in the dataset.

Tue, 17 May 2022

14:00 - 14:30
L1

Pitching soap films

Alberto Paganini
(University of Leicester)
Abstract

This talk is about the mathematics behind an artistic project focusing on the vibrations of soap films.

Subscribe to L1