Fri, 28 Oct 2022

16:00 - 17:00
L1

North Meets South

Ilia Smilga and Charles Parker
Abstract

Ilia Smilga
Margulis spacetimes and crooked planes

We are interested in the following problem: which groups can act 
properly on R^n by affine transformations, or in other terms, can occur 
as a symmetry group of a "regular affine tiling"? If we additionally 
require that they preserve a Euclidean metric (i.e. act by affine 
isometries), then these groups are well-known: they all contain a 
finite-index abelian subgroup. If we remove this requirement, a 
surprising result due to Margulis is that the free group can act 
properly on R^3. I shall explain how to construct such an action.

 

Charles Parker
Unexpected Behavior in Finite Elements for Linear Elasticity
One of the first problems that finite elements were designed to approximate is the small deformations of a linear elastic body; i.e. the 2D/3D version of Hooke's law for springs from elementary physics. However, for nearly incompressible materials, such as rubber, certain finite elements seemingly lose their approximation power. After briefly reviewing the equations of linear elasticity and the basics of finite element methods, we will spend most of the time looking at a few examples that highlight this unexpected behavior. We conclude with a theoretical result that (mostly) explains these findings.

 

 

Fri, 21 Oct 2022

16:00 - 17:00
L1

Maintaining your mental fitness as a graduate student or postdoc

Rebecca Reed and Ian Griffiths
Abstract

Academic research can be challenging and can bring with it difficulties in maintaining good mental health. This session will be led by Rebecca Reed, Mental Health First Aid (MHFA) Instructor, Meditation & Yoga Teacher and Personal Development Coach and owner of wellbeing company Siendo. Rebecca will talk about how we can maintain good mental fitness, recognizing good practices to ensure we avoid mental-health difficulties before they begin. We have deliberately set this session to be at the beginning of the academic year in this spirit. We will also talk about maintaining good mental health specifically in the academic community.   

Fri, 14 Oct 2022

16:00 - 17:00
L1

Meet and Greet Event

Amy Kent and Ellen Luckins
Abstract

Abstract: 

Welcome (back) to Fridays@4! To start the new academic year in this session we’ll introduce what Fridays@4 is for our new students and colleagues. This session will be a chance to meet current students and ECRs from across Maths and Stats who will share their hints and tips on conducting successful research in Oxford. There will be lots of time for questions, discussions and generally meeting more people across the two departments – everyone is welcome!

 

Mon, 21 Nov 2022

15:30 - 16:30
L1

Mapping Space Signatures

Darrick Lee
Abstract

We introduce the mapping space signature, a generalization of the path signature for maps from higher dimensional cubical domains, which is motivated by the topological perspective of iterated integrals by K. T. Chen. We show that the mapping space signature shares many of the analytic and algebraic properties of the path signature; in particular it is universal and characteristic with respect to Jacobian equivalence classes of cubical maps. This is joint work with Chad Giusti, Vidit Nanda, and Harald Oberhauser.

Mon, 24 Oct 2022
13:00
L1

Decomposition and condensation defects in 3d

Ling Lin
(Oxford)
Abstract

Quantum field theories (QFTs) in d dimensions that posses a (d-1)-form symmetry are conjectured to decompose into disjoint “universes”, each of which is itself a (local and unitary) QFT. I will give an overview of our current understanding of decomposition, and then discuss how this phenomenon occurs in the fusion of condensation defects of certain 3d QFTs. This gives a “microscopic” explanation of why in these instances, the fusion coefficient can be taken as an integer rather than a general TQFT.

Mon, 31 Oct 2022
13:00
L1

Holomorphic twist and Confinement

Jingxiang Wu
(Oxford)
Abstract

I will describe a procedure, known as holomorphic twist, to isolate protected quantities in supersymmetric quantum field theories. The resulting theories are holomorphic, interacting and have infinite dimensional symmetries, analogous to the holomorphic half of a 2D CFT. I will explain how to study quantum corrections to these symmetries and other  higher operations.
As a surprise, we find a novel UV manifestation of
confinement, dubbed "holomorphic confinement," in the example of pure
SU(N) super Yang-Mills.

Mon, 17 Oct 2022
13:00
L1

Semiclassics for Large Quantum Numbers

Mark Mezei
(Oxford)
Abstract

According to the correspondence principle, classical physics emerges in the limit of large quantum numbers. We examine three examples of the semiclassical description of conformal field theory data: large charge boundary operators in the O(2) model, large spin impurities in the free triplet scalar field theory and large charge Wilson lines in QED. By simultaneously taking the coupling to zero and quantum numbers to infinity, we can connect the microscopic to the emergent classical description smoothly.

Thu, 10 Nov 2022

12:00 - 13:00
L1

Plant morphogenesis across scales

Prof. Arezki Boudaoud
(Ecole Polytechnique)
Further Information

Biography

After a doctorate in physics at the École normale supérieure in Paris, Arezki Boudaoud completed his post-doctorate in the Mathematics Department of the prestigious MIT (Massachusetts Institute of Technology). He then returned to the Statistical Physics Laboratory of the ENS ULM as a research officer. His work focused on liquid films and thin solids. In parallel, he began to take an interest in morphogenesis in the living and identified the contributions of the mechanical forces to the growth of yeast and the development of plants.

In 2009 the physicist switched to study biology: he joined the École normale supérieure de Lyon as a professor in the Department of Biology and has since led an interdisciplinary team in the Reproduction and development of Plants (RDP) laboratory and the Joliot-Curie laboratory (LJC). The team, entitled "Biophysics and Development", works to understand the mechanisms of morphogenesis in plants, combining tools of biology and physics.

Taken from ENS Lyon website

Abstract

What sets the size and form of living organisms is still, by large, an open question. During this talk, I will illustrate how we are addressing this question by examining the links between spatial scales, from subcellular to organ, both experimentally and theoretically. First, I will present how we are deriving continuous plant growth mechanical models using homogenisation. Second, I will discuss how directionality of organ growth emerges from cell level. Last, I will present predictions of fluctuations at multiple scales and experimental tests of these predictions, by developing a data analysis approach that is broadly relevant to geometrically disordered materials.

 

Thu, 24 Nov 2022

12:00 - 13:00
L1

Hypergraphs for multiscale cycles in structured data (Yoon) Minmax Connectivity and Persistent Homology (Yim)

Ambrose Yim & Iris Yoon (OCIAM)
(Mathematical Institute)
Abstract

Hypergraphs for multiscale cycles in structured data

Iris Yoon

Understanding the spatial structure of data from complex systems is a challenge of rapidly increasing importance. Even when data is restricted to curves in three-dimensional space, the spatial structure of data provides valuable insight into many scientific disciplines, including finance, neuroscience, ecology, biophysics, and biology. Motivated by concrete examples arising in nature, I will introduce hyperTDA, a topological pipeline for analyzing the structure of spatial curves that combines persistent homology, hypergraph theory, and network science. I will show that the method highlights important segments and structural units of the data. I will demonstrate hyperTDA on both simulated and experimental data. This is joint work with Agnese Barbensi, Christian Degnbol Madsen, Deborah O. Ajayi, Michael Stumpf, and Heather Harrington.

 

Minmax Connectivity and Persistent Homology 

Ambrose Yim

We give a pipeline for extracting features measuring the connectivity between two points in a porous material. For a material represented by a density field f, we derive persistent homology related features by exploiting the relationship between dimension zero persistent homology of the density field and the min-max connectivity between two points. We measure how the min-max connectivity varies when spurious topological features of the porous material are removed under persistent homology guided topological simplification. Furthermore, we show how dimension one persistent homology encodes a relaxed notion of min-max connectivity, and demonstrate how we can summarise the multiplicity of connections between a pair of points by associating to the pair a sub-diagram of the dimension one persistence diagram.

Thu, 09 Jun 2022

12:00 - 13:00
L1

The ever-growing blob of fluid

Graham.Benham@maths.ox.ac.uk
(Mathematical Institute)
Abstract

Consider the injection of a fluid onto an impermeable surface for an infinite length of time... Does the injected fluid reach a finite height, or does it keep on growing forever? The classical theory of gravity currents suggests that the height remains finite, causing the radius to grow outwards like the square root of time. When the fluid resides within a porous medium, the same is thought to be true. However, recently I used some small scale experiments and numerical simulations, spanning 12 orders of magnitude in dimensionless time, to demonstrate that the height actually grows very slowly, at a rate ~t^(1/7)*(log(t))^(1/2). This strange behaviour can be explained by analysing the flow in a narrow "inner region" close to the source, in which there are significant vertical velocities and non-hydrostatic pressures. Analytical scalings are derived which match closely with both numerics and experiments, suggesting that the blob of fluid is in fact ever-growing, and therefore becomes unbounded with time.

Subscribe to L1