Fri, 07 Jun 2019
16:00
L1

Optimal control of multiphase fluids and droplets

Michael Hintermueller
(Humboldt)
Abstract

Solidification processes of liquid metal alloys,  bubble dynamics (as in Taylor flows), pinch-offs of liquid-liquid jets, the formation of polymeric membranes, or the structure of high concentration photovoltaic cells are described by the dynamics of multiphase fluids. On the other hand, in applications such as mass spectrometry, lab-on-a-chip, and electro-fluidic displays, fluids on the micro-scale associated with a dielectric medium are of interest. Moreover, in many of these applications one is interested in influencing (or controlling) the underlying phenomenon in order to reach a desired goal. Examples for the latter could be the porosity structure of a polymeric membrane to achieve certain desired filtration properties of the membrane, or to optimize a microfluidic device for the transport of pharmaceutical agents.

A promising mathematical model for the behavior of multiphase flows associated with the applications mentioned above is given by a phase-field model of Cahn-Hilliard / Navier-Stokes (CHNS) type. Some strengths of phase field (or diffuse interface) approaches are due to their ability to overcome both, analytical difficulties of topological changes, such as, e.g., droplet break-ups or the coalescence of interfaces, and numerical challenges in capturing the interface dynamics between the fluid phases. Deep quenches in solidification processes of liquid alloys or rapid wall hardening in the formation of polymer membranes ask for non-smooth energies in connection with Cahn-Hilliard models. Analytically, this gives rise to a variational inequality coupled to the equations of hydrodynamics, thus yielding a non-smooth system (in the sense that the map associated with the underlying operator equation is not necessarily Frechet differentiable). In contrast to phase-field approaches,
one may consider sharp interface models. In view of this, our microfluidic applications alluded to above are formulated in terms of  sharp interface models and Hele-Shaw flows. In this context, we are particularly interested in applications of electrowetting on dielectric (EWOD) with contact line pinning. The latter phenomenon resembles friction, yields a variational inequality of the second kind, and – once again – it results in an overall nonsmooth mathematical model of the physical process.

   In both settings described above, optimal control problems are relevant in order to influence the underlying physical process to approach a desired system state.  The associated optimization problems are delicate as the respective constraints involve non-smooth structures which render the problems degenerate and prevent a direct application of sophisticated tools for the characterization of solutions. Such characterizations are, however, of paramount importance in the design of numerical solution schemes.

This talk addresses some of the analytical challenges associated with optimal control problems involving non-smooth structures, offers pathways to solutions, and it reports on numerical results for both problem classes introduced above.
 

Fri, 25 Oct 2019

16:00 - 17:00
L1

The Four Dimensional Light Bulb Theorem

David Gabai
(Princeton)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

 

Abstract

We discuss a recent generalization of the classical 3-dimensional light bulb theorem to 4-dimensions. We connect this with fundamental questions about knotting of surfaces in 4-dimensional manifolds as well as new directions regarding knotting of 3-balls in 4-manifolds.

 

 

Mon, 24 Jun 2019

17:00 - 18:00
L1

John Bush - Walking on water: from biolocomotion to quantum foundations

John Bush
(MIT)
Further Information

In this lecture John Bush will present seemingly disparate research topics which are in fact united by a common theme and underlaid by a common mathematical framework. 

First there is the ingenuity of the natural world where living creatures use surface tension to support themselves on the water surface and propel 
themselves along it. Then there is a system discovered by Yves Couder only fifteen years ago, in which a small droplet bounces along the surface of a vibrating liquid bath, guided or 'piloted’ by its own wave field. Its ability to reproduce many features previously thought to be exclusive to quantum systems has launched the field of hydrodynamic quantum analogs, and motivated a critical revisitation of the philosophical foundations of quantum mechanics.

John Bush is a Professor of Applied Mathematics in the Department of Mathematics at MIT specialising in fluid dynamics. 

5.00pm-6.00pm, Mathematical Institute, Oxford

Please email @email to register

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/bush

Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Fri, 21 Jun 2019

16:00 - 17:00
L1

North meets South colloquium

Aden Forrow and Paul Ziegler
Abstract

Aden Forrow
Optimal transport and cell differentiation

Abstract
Optimal transport is a rich theory for comparing distributions, with both deep mathematics and application ranging from 18th century fortification planning to computer graphics. I will tie its mathematical story to a biological one, on the differentiation of cells from pluripotency to specialized functional types. First the mathematics can support the biology: optimal transport is an apt tool for linking experimental samples across a developmental time course. Then the biology can inspire new mathematics: based on the branching structure expected in differentiation pathways, we can find a regularization method that dramatically improves the statistical performance of optimal transport.

Paul Ziegler
Geometry and Arithmetic

Abstract
For a family of polynomials in several variables with integral coefficients, the Weil conjectures give a surprising relationship between the geometry of the complex-valued roots of these polynomials and the number of roots of these polynomials "modulo p". I will give an introduction to this circle of results and try to explain how they are used in modern research.
 

Fri, 17 May 2019

16:00 - 17:00
L1

North meets South colloquium

Valérie Voorsluijs and Matthias Nagel
(University of Oxford)
Abstract

Valérie Voorsluijs
Deterministic limit of intracellular calcium spikes
Abstract: In non-excitable cells, global calcium spikes emerge from the collective dynamics of clusters of calcium channels that are coupled by diffusion. Current modeling approaches have opposed stochastic descriptions of these systems to purely deterministic models, while both paradoxically appear compatible with experimental data. Combining fully stochastic simulations and mean-field analyses, we demonstrate that these two approaches can be reconciled. Our fully stochastic model generates spike sequences that can be seen as noise-perturbed oscillations of deterministic origin while displaying statistical properties in agreement with experimental data. These underlying deterministic oscillations arise from a phenomenological spike nucleation mechanism.


Matthias Nagel
Knots in dimensions three and four
Abstract: Knot theory studies the various embeddings of a circle into three-dimensional space. I will describe an equivalence relation on knots, called "concordance", which takes the fourth dimension into account. The study of concordance is intimately related with many problems at the heart of the topology of four-manifolds, such as the difference between the smooth and the topological category, and I will discuss results that illuminate this relation.

Fri, 24 May 2019

16:00 - 17:00
L1

How to give a bad talk

Philip Maini
(University of Oxford)
Abstract

What is the point of giving a talk?  What is the point of going to a talk?  In this presentation, which is intended to have a lot of audience participation, I would like to explore how one should prepare talks for different audiences and different occasions, and what one should try to get out of going to a talk.

Mon, 18 Feb 2019
16:30
L1

Structure of approximate subgroups of nilpotent groups and applications

Romain Tessera
(University of Paris Sud)
Abstract

In a joint work with Matt Tointon, we study the fine structure of approximate groups. We deduce various applications on growth, isoperimetry and quantitative estimates for the the simple random walk on finite vertex transitive graphs.

Mon, 18 Feb 2019
15:30
L1

Cross ratios on cube complexes and length-spectrum rigidity

Elia Fioravanti
(Oxford)
Abstract

A conjecture from the '80s claims that the isometry type of a closed, negatively curved Riemannian manifold should be uniquely determined by the lengths of its closed geodesics. By work of Otal, this is essentially equivalent to the problem of extending cross-ratio preserving maps between Gromov boundaries of simply connected, negatively curved manifolds. Progress on the conjecture has been remarkably slow, with only the 2-dimensional and locally symmetric cases having been solved so far (Otal '90 and Hamenstädt '99).
Still, it is natural to try leaving the world of manifolds and address the conjecture in the general context of non-positively curved metric spaces. We restrict to the class of CAT(0) cube complexes, as their geometry is both rich and well-understood. We introduce a new notion of cross ratio on their horoboundary and use it to provide a full answer to the conjecture in this setting. More precisely, we show that essential, hyperplane-essential cubulations of Gromov-hyperbolic groups are completely determined by their combinatorial length functions. One can also consider non-proper non-cocompact actions of non-hyperbolic groups, as long as the cube complexes are irreducible and have no free faces.
Joint work with J. Beyrer and M. Incerti-Medici.

Mon, 18 Feb 2019
14:15
L1

RAAGs and Stable Commutator Length

Nicolaus Heuer
(Oxford)
Abstract

Stable commutator length (scl) is a well established invariant of elements g in the commutator subgroup (write scl(g)) and has both geometric and algebraic meaning.  A group has a \emph{gap} in stable commutator length if for every non-trivial element g, scl(g) > C for some C > 0.
SCL may be interpreted as an 'algebraic translation length' and such a gap may be thus interpreted an 'algebraic injectivity radius'.
Many classes of groups have such a gap, like hyperbolic groups, mapping class groups, Baumslag-Solitar groups and graph of groups.
In this talk I will show that Right-Angled Artin Groups have the optimal scl-gap of 1/2. This yields a new invariant for the vast class of subgroups of Right-Angled Artin Groups.

Mon, 18 Feb 2019
13:15
L1

Quasi-isometric embeddings of symmetric spaces and lattices

Thang Nguyen
(Courant Institute of Mathematical Sciences)
Abstract

Symmetric spaces and lattices are important objects to model spaces in geometry and topology. They have been studied from many different viewpoints. We will concentrate on their coarse geometry view point in this talk. I will first quickly go over some well-known results about quasi-isometry of those spaces. Then I will move to the study about quasi-isometric embeddings. While results in this direction are far less complete and well-studied, there are some rigidity phenomenons still happening here.

Subscribe to L1