Fri, 17 May 2019

14:00 - 15:00
L1

Finals Forum

Dr Vicky Neale and Dr Richard Earl
Abstract

This week’s Fridays@2 session, led by Dr Richard Earl and Dr Vicky Neale, is intended to provide advice on exam preparation and how to approach the Part A and Part B exams.


This session is aimed at second years and third years who will be sitting exams this term. Next week’s Fridays@2 will be for first years and will look at preparing for Prelims papers.
 

Fri, 10 May 2019

14:00 - 15:00
L1

Managing Exam Anxiety

Dr Ruth Collins
Abstract

This workshop will focus on the main causes of exam stress, anxiety and panic and look at practical strategies to manage and overcome these issues. We will also review strategies to best support exam preparation.

 

Dr Ruth Collins is a Chartered Psychologist who specialises in the management of anxiety and panic. She is also a trained mindfulness teacher and an associate of the Oxford Mindfulness Centre.

Fri, 03 May 2019

14:00 - 15:00
L1

Mathematics: the past, present and future - "When Algebra met Topology"

Prof Ulrike Tillmann
Abstract

This year sees the 100th anniversary of Emmy Noether receiving her Habilitation and thus becoming the first women to be granted the right to teach and lecture at a university in Prussia (now Germany).  Noether shaped modern algebra and her influence was felt in many other fields including topology.


We will start by exploring what algebraic topology is, how the subject was shaped by algebra (under the influence of Noether), before considering some current challenges and applications.

Fri, 26 Apr 2019

16:00 - 17:00
L1

Mathematics in developing countries

Federico Danieli and Christian Bick
(University of Oxford)
Abstract

How do you create a self-sustaining, flourishing academic community in a developing country? What kind of challenges need to be overcome to ensure that quality education becomes available? What can we do to help make it happen? In this talk, we will describe our experience visiting the University of Yangon in Myanmar. During the visit, we delivered a course to the academic staff, and discussed future collaborations between Oxford and Yangon, as well as further directions for Mathematical education in Myanmar, all the while marvelling at the wonders of the Burmese culture.

Fri, 15 Nov 2019

16:00 - 17:00
L1

Wave localization and its landscape

Doug Arnold
(University of Minnesota)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

Abstract

The puzzling phenonenon of wave localization refers to unexpected confinement of waves triggered by disorder in the propagating medium. Localization arises in many physical and mathematical systems and has many important implications and applications. A particularly important case is the Schrödinger equation of quantum mechanics, for which the localization behavior is crucial to the electrical properties of materials. Mathematically it is tied to exponential decay of eigenfunctions of operators instead of their expected extension throughout the domain. Although localization has been studied by physicists and mathematicians for the better part of a century, many aspects remain mysterious. In particular, the sort of deterministic quantitative results needed to predict, control, and exploit localization have remained elusive. This talk will focus on major strides made in recent years based on the introduction of the landscape function and its partner, the effective potential. We will describe these developments from the viewpoint of a computational mathematician who sees the landscape theory as a completely unorthodox sort of a numerical method for computing spectra.

Fri, 18 Oct 2019

16:00 - 17:00
L1

Geometry as a key to the virosphere: Mathematics as a driver of discovery in virology and anti-viral therapy

Reidun Twarock
(University of York)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

Abstract

Viruses encapsulate their genetic material into protein containers that act akin to molecular Trojan horses, protecting viral genomes between rounds of infection and facilitating their release into the host cell environment. In the majority of viruses, including major human pathogens, these containers have icosahedral symmetry. Mathematical techniques from group, graph and tiling theory can therefore be used to better understand how viruses form, evolve and infect their hosts, and point the way to novel antiviral solutions.

In this talk, I will present an overarching theory of virus architecture, that contains the seminal Caspar Klug theory as a special case and solves long-standing open problems in structural virology. Combining insights into virus structure with a range of different mathematical modelling techniques, such as Gillespie algorithms, I will show how viral life cycles can be better understood through the lens of viral geometry. In particular, I will discuss a recent model for genome release from the viral capsid. I will also demonstrate the instrumental role of the Hamiltonian path concept in the discovery of a virus assembly mechanism that occurs in many human pathogens, such as Picornaviruses – a family that includes the common cold virus– and Hepatitis B and C virus. I will use multi-scale models of a viral infection and implicit fitness landscapes in order to demonstrate that therapeutic interventions directed against this mechanism have advantages over conventional forms of anti-viral therapy. The talk will finish with a discussion of how the new mathematical and mechanistic insights can be exploited in bio-nanotechnology for applications in vaccination and gene therapy.

Fri, 14 Jun 2019

16:00 - 17:00
L1

Old and new on crystalline cohomology and the de Rham-Witt complex

Luc Illusie
(Université de Paris-Sud, Orsay)
Abstract

The subject of $p$-adic cohomologies is over fifty years old. Many new developments have recently occurred. I will mostly limit myself to discussing some pertaining to the de Rham-Witt complex. After recalling the historical background and the basic results, I will give an overview of the new approach of Bhatt, Lurie and Mathew.

Fri, 07 Jun 2019
16:00
L1

Optimal control of multiphase fluids and droplets

Michael Hintermueller
(Humboldt)
Abstract

Solidification processes of liquid metal alloys,  bubble dynamics (as in Taylor flows), pinch-offs of liquid-liquid jets, the formation of polymeric membranes, or the structure of high concentration photovoltaic cells are described by the dynamics of multiphase fluids. On the other hand, in applications such as mass spectrometry, lab-on-a-chip, and electro-fluidic displays, fluids on the micro-scale associated with a dielectric medium are of interest. Moreover, in many of these applications one is interested in influencing (or controlling) the underlying phenomenon in order to reach a desired goal. Examples for the latter could be the porosity structure of a polymeric membrane to achieve certain desired filtration properties of the membrane, or to optimize a microfluidic device for the transport of pharmaceutical agents.

A promising mathematical model for the behavior of multiphase flows associated with the applications mentioned above is given by a phase-field model of Cahn-Hilliard / Navier-Stokes (CHNS) type. Some strengths of phase field (or diffuse interface) approaches are due to their ability to overcome both, analytical difficulties of topological changes, such as, e.g., droplet break-ups or the coalescence of interfaces, and numerical challenges in capturing the interface dynamics between the fluid phases. Deep quenches in solidification processes of liquid alloys or rapid wall hardening in the formation of polymer membranes ask for non-smooth energies in connection with Cahn-Hilliard models. Analytically, this gives rise to a variational inequality coupled to the equations of hydrodynamics, thus yielding a non-smooth system (in the sense that the map associated with the underlying operator equation is not necessarily Frechet differentiable). In contrast to phase-field approaches,
one may consider sharp interface models. In view of this, our microfluidic applications alluded to above are formulated in terms of  sharp interface models and Hele-Shaw flows. In this context, we are particularly interested in applications of electrowetting on dielectric (EWOD) with contact line pinning. The latter phenomenon resembles friction, yields a variational inequality of the second kind, and – once again – it results in an overall nonsmooth mathematical model of the physical process.

   In both settings described above, optimal control problems are relevant in order to influence the underlying physical process to approach a desired system state.  The associated optimization problems are delicate as the respective constraints involve non-smooth structures which render the problems degenerate and prevent a direct application of sophisticated tools for the characterization of solutions. Such characterizations are, however, of paramount importance in the design of numerical solution schemes.

This talk addresses some of the analytical challenges associated with optimal control problems involving non-smooth structures, offers pathways to solutions, and it reports on numerical results for both problem classes introduced above.
 

Fri, 25 Oct 2019

16:00 - 17:00
L1

The Four Dimensional Light Bulb Theorem

David Gabai
(Princeton)
Further Information

The Oxford Mathematics Colloquia are generously sponsored by Oxford University Press.

 

Abstract

We discuss a recent generalization of the classical 3-dimensional light bulb theorem to 4-dimensions. We connect this with fundamental questions about knotting of surfaces in 4-dimensional manifolds as well as new directions regarding knotting of 3-balls in 4-manifolds.

 

 

Mon, 24 Jun 2019

17:00 - 18:00
L1

John Bush - Walking on water: from biolocomotion to quantum foundations

John Bush
(MIT)
Further Information

In this lecture John Bush will present seemingly disparate research topics which are in fact united by a common theme and underlaid by a common mathematical framework. 

First there is the ingenuity of the natural world where living creatures use surface tension to support themselves on the water surface and propel 
themselves along it. Then there is a system discovered by Yves Couder only fifteen years ago, in which a small droplet bounces along the surface of a vibrating liquid bath, guided or 'piloted’ by its own wave field. Its ability to reproduce many features previously thought to be exclusive to quantum systems has launched the field of hydrodynamic quantum analogs, and motivated a critical revisitation of the philosophical foundations of quantum mechanics.

John Bush is a Professor of Applied Mathematics in the Department of Mathematics at MIT specialising in fluid dynamics. 

5.00pm-6.00pm, Mathematical Institute, Oxford

Please email @email to register

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/bush

Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Subscribe to L1