Tue, 27 Nov 2012
17:00
L2

'Orbit coherence in permutation groups'

Mark Wildon
(Royal Holloway)
Abstract

Let G be a permutation group acting on a set Omega. For g in G, let pi(g) denote the partition of Omega given by the orbits of g. The set of all partitions of Omega is naturally ordered by refinement and admits lattice operations of meet and join. My talk concerns the groups G such that the partitions pi(g) for g in G form a sublattice. This condition is highly restrictive, but there are still many interesting examples. These include centralisers in the symmetric group Sym(Omega) and a class of profinite abelian groups which act on each of their orbits as a subgroup of the Prüfer group. I will also describe a classification of the primitive permutation groups of finite degree whose set of orbit partitions is closed under taking joins, but not necessarily meets.

This talk is on joint work with John R. Britnell (Imperial College).

Tue, 30 Oct 2012
17:00
L2

A closed formula for the Kronecker coefficients.

Dr Chris Bowman
Abstract

The Kronecker coefficients describe the decomposition of the tensor product of two Specht modules for the symmetric group over the complex numbers. Surprisingly, until now, no closed formula was known to compute these coefficients. In this talk, I will report on joint work with M. De Visscher and R. Orellana where we use the Schur-Weyl duality between the symmetric group and the partition algebra to find such a formula.
Wed, 24 Oct 2012

16:00 - 17:00
L2

The metric geometry of mapping class groups

David Hume
Abstract

We give a brief overview of hyperbolic metric spaces and the relatively hyperbolic counterparts, with particular emphasis on the quasi-isometry class of trees. We then show that an understanding of the relative version of such spaces - quasi tree-graded spaces -  has strong consequences for mapping class groups. In particular, they are shown to embed into a finite product of (possibly infinite valence) simplicial trees. This uses and extends the work of Bestvina, Bromberg and Fujiwara.

Tue, 16 Oct 2012
17:00
L2

Superrigidity for mapping class groups?

Prof Juan Souto
(British Columbia)
Abstract

There is a well-acknowledged analogy between mapping class
groups and lattices in higher rank groups. I will discuss to which
extent does Margulis's superrigidity hold for mapping class groups:
examples, very partial results and questions.

Tue, 23 Oct 2012
17:00
L2

The width of a group

Nick Gill
(Open University)
Abstract

I describe recent work with Pyber, Short and Szabo in which we study the `width' of a finite simple group. Given a group G and a subset A of G, the `width of G with respect to A' - w(G,A) - is the smallest number k such that G can be written as the product of k conjugates of A. If G is finite and simple, and A is a set of size at least 2, then w(G,A) is well-defined; what is more Liebeck, Nikolov and Shalev have conjectured that in this situation there exists an absolute constant c such that w(G,A)\leq c log|G|/log|A|. 
I will present a partial proof of this conjecture as well as describing some interesting, and unexpected, connections between this work and classical additive combinatorics. In particular the notion of a normal K-approximate group will be introduced.

Tue, 09 Oct 2012
17:00
L2

Rank Gradient of Artin Groups and Relatives

Nikolay Nikolov
(University of Oxford)
Abstract

We prove that the rank gradient vanishes for mapping class groups, Aut(Fn) for all n, Out(Fn), n > 2 and any Artin group whose underlying graph is connected. We compute the rank gradient and verify that it is equal to the first L2-Betti number for some classes of Coxeter groups.

Fri, 09 Nov 2012
16:30
L2

Numerical Methods for Tsunami Modeling and Hazard Assessment

Randall J. LeVeque
(Applied Mathematics Department University of Washington)
Abstract

 Many geophysical flows over topography can be modeled by two-dimensional
depth-averaged fluid dynamics equations.  The shallow water equations
are the simplest example of this type, and are often sufficiently
accurate for simulating tsunamis and other large-scale flows such
as storm surge.  These hyperbolic partial differential equations
can be modeled using high-resolution finite volume methods.  However,
several features of these flows lead to new algorithmic challenges,
e.g. the need for well-balanced methods to capture small perturbations
to the ocean at rest, the desire to model inundation and flooding,
and that vastly differing spatial scales that must often be modeled,
making adaptive mesh refinement essential. I will discuss some of
the algorithms implemented in the open source software GeoClaw that
is aimed at solving real-world geophysical flow problems over
topography.  I'll also show results of some recent studies of the
11 March 2011 Tohoku Tsunami and discuss the use of tsunami modeling
in probabilistic hazard assessment.

Fri, 08 Jun 2012
16:30
L2

Bilipschitz embeddings of metric spaces in Banach spaces

Bruce Kleiner
(NYU)
Abstract

A map betweem metric spaces is a bilipschitz homeomorphism if it

is Lipschitz and has a Lipschitz inverse; a map is a bilipschitz embedding

if it is a bilipschitz homeomorphism onto its image. Given metric spaces

X and Y, one may ask if there is a bilipschitz embedding X--->Y, and if

so, one may try to find an embedding with minimal distortion, or at least

estimate the best bilipschitz constant. Such bilipschitz embedding

problems arise in various areas of mathematics, including geometric group

theory, Banach space geometry, and geometric analysis; in the last 10

years they have also attracted a lot of attention in theoretical computer

science.

The lecture will be a survey bilipschitz embedding in Banach spaces from

the viewpoint of geometric analysis.

Tue, 05 Jun 2012
17:00
L2

Artin groups of large type: from geodesics to Baum-Connes

Professor S. Rees
(Newcastle)
Abstract

I’ll report on my recent work (with co-authors Holt and Ciobanu) on Artin

groups of large type, that is groups with presentations of the form

G = hx1, . . . , xn | xixjxi · · · = xjxixj · · · , 8i 3. (In fact, our results still hold when some, but not all

possible, relations with mij = 2 are allowed.)

Recently, Holt and I characterised the geodesic words in these groups, and

described an effective method to reduce any word to geodesic form. That

proves the groups shortlex automatic and gives an effective (at worst quadratic)

solution to the word problem. Using this characterisation of geodesics, Holt,

Ciobanu and I can derive the rapid decay property for most large type

groups, and hence deduce for most of these that the Baum-Connes conjec-

ture holds; this has various consequence, in particular that the Kadison-

Kaplansky conjecture holds for these groups, i.e. that the group ring CG

contains no non-trivial idempotents.

1

Subscribe to L2