Fri, 09 Nov 2012
16:30
L2

Numerical Methods for Tsunami Modeling and Hazard Assessment

Randall J. LeVeque
(Applied Mathematics Department University of Washington)
Abstract

 Many geophysical flows over topography can be modeled by two-dimensional
depth-averaged fluid dynamics equations.  The shallow water equations
are the simplest example of this type, and are often sufficiently
accurate for simulating tsunamis and other large-scale flows such
as storm surge.  These hyperbolic partial differential equations
can be modeled using high-resolution finite volume methods.  However,
several features of these flows lead to new algorithmic challenges,
e.g. the need for well-balanced methods to capture small perturbations
to the ocean at rest, the desire to model inundation and flooding,
and that vastly differing spatial scales that must often be modeled,
making adaptive mesh refinement essential. I will discuss some of
the algorithms implemented in the open source software GeoClaw that
is aimed at solving real-world geophysical flow problems over
topography.  I'll also show results of some recent studies of the
11 March 2011 Tohoku Tsunami and discuss the use of tsunami modeling
in probabilistic hazard assessment.

Fri, 08 Jun 2012
16:30
L2

Bilipschitz embeddings of metric spaces in Banach spaces

Bruce Kleiner
(NYU)
Abstract

A map betweem metric spaces is a bilipschitz homeomorphism if it

is Lipschitz and has a Lipschitz inverse; a map is a bilipschitz embedding

if it is a bilipschitz homeomorphism onto its image. Given metric spaces

X and Y, one may ask if there is a bilipschitz embedding X--->Y, and if

so, one may try to find an embedding with minimal distortion, or at least

estimate the best bilipschitz constant. Such bilipschitz embedding

problems arise in various areas of mathematics, including geometric group

theory, Banach space geometry, and geometric analysis; in the last 10

years they have also attracted a lot of attention in theoretical computer

science.

The lecture will be a survey bilipschitz embedding in Banach spaces from

the viewpoint of geometric analysis.

Tue, 05 Jun 2012
17:00
L2

Artin groups of large type: from geodesics to Baum-Connes

Professor S. Rees
(Newcastle)
Abstract

I’ll report on my recent work (with co-authors Holt and Ciobanu) on Artin

groups of large type, that is groups with presentations of the form

G = hx1, . . . , xn | xixjxi · · · = xjxixj · · · , 8i 3. (In fact, our results still hold when some, but not all

possible, relations with mij = 2 are allowed.)

Recently, Holt and I characterised the geodesic words in these groups, and

described an effective method to reduce any word to geodesic form. That

proves the groups shortlex automatic and gives an effective (at worst quadratic)

solution to the word problem. Using this characterisation of geodesics, Holt,

Ciobanu and I can derive the rapid decay property for most large type

groups, and hence deduce for most of these that the Baum-Connes conjec-

ture holds; this has various consequence, in particular that the Kadison-

Kaplansky conjecture holds for these groups, i.e. that the group ring CG

contains no non-trivial idempotents.

1

Tue, 15 May 2012
17:00
L2

'More words on words'

Aner Shalev
(Jerusalem)
Abstract

In recent years there has been extensive interest in word maps on groups, and various results were obtained, with emphasis on simple groups. We shall focus on some new results on word maps for more general families of finite and infinite groups.

Tue, 01 May 2012
17:00
L2

Reflection group presentations arising from cluster algebras

Professor R. Marsh
(Leeds)
Abstract

 Finite reflection groups are often presented as Coxeter groups. We give a
presentation of finite crystallographic reflection group in terms of an
arbitrary seed in the corresponding cluster algebra of finite type for which
the Coxeter presentation is a special case. We interpret the presentation in
terms of companion bases in the associated root system. This is joint work with 
Michael Barot (UNAM, Mexico)
Fri, 04 May 2012
16:30
L2

Social networks that balance themselves

Professor Steven Strogatz
(Cornell University)
Abstract

 Consider a fully-connected social network of people, companies,
or countries, modeled as an undirected complete graph with real numbers on
its edges. Positive edges link friends; negative edges link enemies.
I'll discuss two simple models of how the edge weights of such networks
might evolve over time, as they seek a balanced state in which "the enemy of
my enemy is my friend." The mathematical techniques involve elementary
ideas from linear algebra, random graphs, statistical physics, and
differential equations. Some motivating examples from international
relations and social psychology will also be discussed. This is joint work
with Seth Marvel, Jon Kleinberg, and Bobby Kleinberg. 

Subscribe to L2