Mon, 10 Jun 2013

15:45 - 16:45
L3

On Sofic Groups

Derek Holt
(Warwick)
Abstract

The class of sofic groups was introduced by Gromov in 1999. It
includes all residually finite and all amenable groups. In fact, no group has been proved
not to be sofic, so it remains possible that all groups are sofic. Their
defining property is that, roughly speaking, for any finite subset F of
the group G, there is a map from G to a finite symmetric group, which is
approximates to an injective homomorphism on F. The widespread interest in
these group results partly from their connections with other branches of
mathematics, including dynamical systems. In the talk, we will concentrate
on their definition and algebraic properties.

Thu, 16 May 2013

10:00 - 12:00
L3

Metric aspects of generalized Baumslag-Solitar groups

Alain Valette
(Neuchatel)
Abstract

A generalized Baumslag-Solitar group is a group G acting co-compactly on a tree X, with all vertex- and edge stabilizers isomorphic to the free abelian group of rank n. We will discuss the $L^p$-metric and $L^p$-equivariant compression of G, and also the quasi-isometric embeddability of G in a finite product of binary trees. Complete results are obtained when either $n=1$, or the quotient graph $G\X$ is either a tree or homotopic to a circle. This is joint work with Yves Cornulier.

Thu, 30 May 2013

16:00 - 17:00
L3

On translation invariant quadratic forms

Eugen Keil
(Bristol)
Abstract

Solutions to translation invariant linear forms in dense sets  (for example: k-term arithmetic progressions), have been studied extensively in additive combinatorics and number theory. Finding solutions to translation invariant quadratic forms is a natural generalization and at the same time a simple instance of the hard general problem of solving diophantine equations in unstructured sets. In this talk I will explain how to modify the  classical circle method approach to obtain quantitative results  for quadratic forms with at least 17 variables.

Thu, 25 Apr 2013

16:00 - 17:00
L3

Modular curves, Deligne-Lusztig curves and Serre weights

Teruyoshi Yoshida
(Cambridge)
Abstract

One of the most subtle aspects of the correspondence between automorphic and Galois representations is the weight part of Serre conjectures, namely describing the weights of modular forms corresponding to mod p congruence class of Galois representations. We propose a direct geometric approach via studying the mod p cohomology groups of certain integral models of modular or Shimura curves, involving Deligne-Lusztig curves with the action of GL(2) over finite fields. This is a joint work with James Newton.

Mon, 25 Feb 2013

15:45 - 16:45
L3

The complexity of group presentations, manifolds, and the Andrews-Curtis conjecture

Martin Bridson
(Oxford)
Abstract
Many natural problems concerning the geometry and topology of manifolds are intimately connected with the nature of presentations for the fundamental groups of the manifolds. I shall illustrate this theme with various specific results, then focus on balanced presentations. I'll explain the (open) Andrews-Curtis conjecture and it's relation to the smooth 4-dimensional Poincare conjecture, and I'll present a construction that gives (huge) lower bounds on how hard it is to distinguish a homology 4-sphere from a genuine sphere.

Subscribe to L3