Thu, 28 Nov 2013

16:00 - 17:00
L3

Network dynamics and meso-scale structures

Anne-Ly Do
(Max-Planck Institute for the Physics of Complex Systems)
Abstract

The dynamics of networks of interacting systems depend intricately on the interaction topology. Dynamical implications of local topological properties such as the nodes' degrees and global topological properties such as the degree distribution have intensively been studied. Mesoscale properties, by contrast, have only recently come into the sharp focus of network science but have

rapidly developed into one of the hot topics in the field. Current questions are: can considering a mesoscale structure such as a single subgraph already allow conclusions on dynamical properties of the network as a whole? And: Can we extract implications that are independent of the embedding network? In this talk I will show that certain mesoscale subgraphs have precise and distinct

consequences for the system-level dynamics. In particular, they induce characteristic dynamical instabilities that are independent of the structure of the embedding network.

Thu, 21 Nov 2013

16:00 - 17:00
L3

Leftovers are just fine

Neville Fowkes
(UWA)
Abstract

After an MISG there is time to reflect. I will report briefly on the follow up to two problems that we have worked on.

Crack Repair:

It has been found that thin elastically weak spray on liners stabilise walls and reduce rock blast in mining tunnels. Why? The explanation seems to be that the stress field singularity at a crack tip is strongly altered by a weak elastic filler, so cracks in the walls are less likely to extend.

Boundary Tracing:

Using known exact solutions to partial differential equations new domains can be constructed along which prescribed boundary conditions are satisfied. Most notably this technique has been used to extract a large class of new exact solutions to the non-linear Laplace Young equation (of importance in capillarity) including domains with corners and rough boundaries. The technique has also been used on Poisson's, Helmholtz, and constant curvature equation examples. The technique is one that may be useful for handling modelling problems with awkward/interesting geometry.

Thu, 14 Nov 2013

16:00 - 17:00
L3

Hydrodynamic Turbulence as a Problem in Non-Equilibrium Statistical Mechanics

David Ruelle
(Emeritus Professor IHÉS)
Abstract

The problem of hydrodynamic turbulence is reformulated as a heat flow problem along a chain of mechanical systems which describe units of fluid of smaller and smaller spatial extent. These units are macroscopic but have few degrees of freedom, and can be studied by the methods of (microscopic) non-equilibrium statistical mechanics. The fluctuations predicted by statistical mechanics correspond to the intermittency observed in turbulent flows. Specically, we obtain the formula

$$ \zeta_p = \frac{p}{3} - \frac{1}{\ln \kappa} \ln \Gamma \left( \frac{p}{3} +1 \right) $$

for the exponents of the structure functions ($\left\langle \Delta_{r}v \rangle \sim r^{\zeta_p}$). The meaning of the adjustable parameter is that when an eddy of size $r$ has decayed to eddies of size $r/\kappa$ their energies have a thermal distribution. The above formula, with $(ln \kappa)^{-1} = .32 \pm .01$ is in good agreement with experimental data. This lends support to our physical picture of turbulence, a picture which can thus also be used in related problems.

Thu, 07 Nov 2013

16:00 - 17:00
L3

A geometric framework for interpreting and parameterising ocean eddy fluxes

David Marshall
(AOPP)
Abstract

The ocean is populated by an intense geostrophic eddy field with a dominant energy-containing scale on the order of 100 km at midlatitudes. Ocean climate models are unlikely routinely to resolve geostrophic eddies for the foreseeable future and thus development and validation of improved parameterisations is a vital task. Moreover, development and validation of improved eddy parameterizations is an excellent strategy for testing and advancing our understanding of how geostrophic ocean eddies impact the large-scale circulation.

A new mathematical framework for parameterising ocean eddy fluxes is developed that is consistent with conservation of energy and momentum while retaining the symmetries of the original eddy fluxes. The framework involves rewriting the residual-mean eddy force, or equivalently the eddy potential vorticity flux, as the divergence of an eddy stress tensor. A norm of this tensor is bounded by the eddy energy, allowing the components of the stress tensor to be rewritten in terms of the eddy energy and non-dimensional parameters describing the mean "shape" of the eddies. If a prognostic equation is solved for the eddy energy, the remaining unknowns are non-dimensional and bounded in magnitude by unity. Moreover, these non-dimensional geometric parameters have strong connections with classical stability theory. For example, it is shown that the new framework preserves the functional form of the Eady growth rate for linear instability, as well as an analogue of Arnold's first stability theorem. Future work to develop a full parameterisation of ocean eddies will be discussed.

Thu, 31 Oct 2013

16:00 - 17:00
L3

Coherent Lagrangian vortices: The black holes of turbulence

George Haller
(ETH Zurich)
Abstract

We discuss a simple variational principle for coherent material vortices

in two-dimensional turbulence. Vortex boundaries are sought as closed

stationary curves of the averaged Lagrangian strain. We find that

solutions to this problem are mathematically equivalent to photon spheres

around black holes in cosmology. The fluidic photon spheres satisfy

explicit differential equations whose outermost limit cycles are optimal

Lagrangian vortex boundaries. As an application, we uncover super-coherent

material eddies in the South Atlantic, which yield specific Lagrangian

transport estimates for Agulhas rings. We also describe briefly coherent

Lagrangian vortex detection to three-dimensional flows.

Thu, 24 Oct 2013

16:00 - 17:00
L3

Connectivity in confined dense networks

Carl Dettman
(Bristol)
Abstract

We consider a random geometric graph model relevant to wireless mesh networks. Nodes are placed uniformly in a domain, and pairwise connections

are made independently with probability a specified function of the distance between the pair of nodes, and in a more general anisotropic model, their orientations. The probability that the network is (k-)connected is estimated as a function of density using a cluster expansion approach. This leads to an understanding of the crucial roles of

local boundary effects and of the tail of the pairwise connection function, in contrast to lower density percolation phenomena.

Thu, 17 Oct 2013

16:00 - 17:00
L3

Patterns in neural field models

Stephen Coombes
(University of Nottingham)
Abstract

Neural field models describe the coarse-grained activity of populations of

interacting neurons. Because of the laminar structure of real cortical

tissue they are often studied in two spatial dimensions, where they are well

known to generate rich patterns of spatiotemporal activity. Such patterns

have been interpreted in a variety of contexts ranging from the

understanding of visual hallucinations to the generation of

electroencephalographic signals. Typical patterns include localised

solutions in the form of travelling spots, as well as intricate labyrinthine

structures. These patterns are naturally defined by the interface between

low and high states of neural activity. Here we derive the equations of

motion for such interfaces and show, for a Heaviside firing rate, that the

normal velocity of an interface is given in terms of a non-local Biot-Savart

type interaction over the boundaries of the high activity regions. This

exact, but dimensionally reduced, system of equations is solved numerically

and shown to be in excellent agreement with the full nonlinear integral

equation defining the neural field. We develop a linear stability analysis

for the interface dynamics that allows us to understand the mechanisms of

pattern formation that arise from instabilities of spots, rings, stripes and

fronts. We further show how to analyse neural field models with

linear adaptation currents, and determine the conditions for the dynamic

instability of spots that can give rise to breathers and travelling waves.

We end with a discussion of amplitude equations for analysing behaviour in

the vicinity of a bifurcation point (for smooth firing rates). The condition

for a drift instability is derived and a center manifold reduction is used

to describe a slowly moving spot in the vicinity of this bifurcation. This

analysis is extended to cover the case of two slowly moving spots, and

establishes that these will reflect from each other in a head-on collision.

Mon, 29 Apr 2013

15:45 - 16:45
L3

Exact Lagrangian immersions in Euclidean space

Ivan Smith
(Cambridge)
Abstract

Exact Lagrangian immersions are governed by an h-principle, whilst exact Lagrangian

embeddings are well-known to be constrained by strong rigidity theorems coming from

holomorphic curve theory. We consider exact Lagrangian immersions in Euclidean space with a

prescribed number of double points, and find that the borderline between flexibility and

rigidity is more delicate than had been imagined. The main result obtains constraints on such

immersions with exactly one double point which go beyond the usual setting of Morse or Floer

theory. This is joint work with Tobias Ekholm, and in part with Ekholm, Eliashberg and Murphy.

Mon, 13 May 2013

15:45 - 16:45
L3

The moduli space of topological realisations of an unstable coalgebra

George Raptis
(Osnabrueck)
Abstract

The mod p homology of a space is an unstable coalgebra over the Steenrod algebra at the prime p. This talk will be about the classical problem of realising an unstable coalgebra as the homology of a space. More generally, one can consider the moduli space of all such topological realisations and ask for a description of its homotopy type. I will discuss an obstruction theory which describes this moduli space in terms of the Andr\'{e}-Quillen cohomology of the unstable coalgebra. This is joint work with G. Biedermann and M. Stelzer.

Mon, 20 May 2013

15:45 - 16:45
L3

Fibering 5-manifolds with fundamental group Z over the circle

Yang Su
(Beijing)
Abstract

 In this talk I will introduce my joint work with Kreck on a classification of
certain 5-manifolds with fundamental group Z. This result can be interpreted as a
generalization of the classical Browder-Levine's fibering theorem to dimension 5.

Subscribe to L3