Thu, 07 Nov 2024
16:00
L3

E-functions and their roots

Peter Jossen
(King's College London)
Abstract
E-functions are a special class of entire function given by power series with algebraic coefficients, particular examples of which are the exponential function or Bessel functions. They were introduced by Siegel in the 1930's.
 
While special values of E-functions are relatively well understood, their roots remain mysterious in many ways. I will explain how roots of E-functions are distributed in the complex plane (essentially a Theorem of Pólya), and discuss a couple of related questions and conjectures. From the roots of an E-function one may also fabricate a "spectral" zeta function, which turns out to have some interesting properties.
Mon, 28 Oct 2024
15:30
L3

Higher Order Lipschitz Functions in Data Science

Dr Andrew Mcleod
(Mathematical Institute)
Abstract

The notion of Lip(gamma) Functions, for a parameter gamma > 0, introduced by Stein in the 1970s (building on earlier work of Whitney) is a notion of smoothness that is well-defined on arbitrary closed subsets (including, in particular, finite subsets) that is instrumental in the area of Rough Path Theory initiated by Lyons and central in recent works of Fefferman. Lip(gamma) functions provide a higher order notion of Lipschitz regularity that is well-defined on arbitrary closed subsets, and interacts well with the more classical notion of smoothness on open subsets. In this talk we will survey the historical development of Lip(gamma) functions and illustrate some fundamental properties that make them an attractive class of function to work with from a machine learning perspective. In particular, models learnt within the class of Lip(gamma) functions are well-suited for both inference on new unseen input data, and for allowing cost-effective inference via the use of sparse approximations found via interpolation-based reduction techniques. Parts of this talk will be based upon the works https://arxiv.org/abs/2404.06849 and https://arxiv.org/abs/2406.03232.

Mon, 02 Dec 2024
15:30
L3

Chasing regularization by noise of 3D Navier-Stokes equations

Dr Antonio Agresti
(Delft University of Technology )
Abstract

Global well-posedness of 3D Navier-Stokes equations (NSEs) is one of the biggest open problems in modern mathematics. A long-standing conjecture in stochastic fluid dynamics suggests that physically motivated noise can prevent (potential) blow-up of solutions of the 3D NSEs. This phenomenon is often referred to as `regularization by noise'. In this talk, I will review recent developments on the topic and discuss the solution to this problem in the case of the 3D NSEs with small hyperviscosity, for which the global well-posedness in the deterministic setting remains as open as for the 3D NSEs. An extension of our techniques to the case without hyperviscosity poses new challenges at the intersection of harmonic and stochastic analysis, which, if time permits, will be discussed at the end of the talk.

Mon, 25 Nov 2024
15:30
L3

Stochastic quantization of fractional $\Phi^4_3$ model of Euclidean quantum field theory

Dr Paweł Duch
(Ecole Polytechnique Federale de Lausanne)
Abstract

The construction of the measure of the $\Phi^4_3$ model in the 1970s has been one of the major achievements of constructive quantum field theory. In the 1980s Parisi and Wu suggested an alternative way of constructing quantum field theory measures by viewing them as invariant measures of certain stochastic PDEs. However, the highly singular nature of these equations prevented their application in rigorous constructions until the breakthroughs in the area of singular stochastic PDEs in the past decade. After explaining the basic idea behind stochastic quantization proposed by Parisi and Wu I will show how to apply this technique to construct the measure of a certain quantum field theory model generalizing the $\Phi^4_3$ model called the fractional $\Phi^4$ model. The measure of this model is obtained as a perturbation of the Gaussian measure with covariance given by the inverse of a fractional Laplacian. Since the Gaussian measure is supported in the space of Schwartz distributions and the quartic interaction potential of the model involves pointwise products, to construct the measure it is necessary to solve the so-called renormalization problem. Based on joint work with M. Gubinelli and P. Rinaldi.

Mon, 18 Nov 2024
15:30
L3

Critical phenomena in intermediate dimensions

Dr Pierre-Francois Rodriguez
(Imperial College )
Abstract

The talk will focus on recent developments regarding the (near-)critical behaviour of certain statistical physics models with long-range dependence in dimensions larger than 2, but smaller than 6, above which mean-field behaviour is known to set in. This “intermediate” regime remains a great challenge for mathematicians. The models revolve around a certain percolation phase transition that brings into play very natural probabilistic objects, such as random walk traces and the Gaussian free field. 

Mon, 21 Oct 2024
15:30
L3

Large deviations for the Φ^4_3 measure via Stochastic Quantisation

Dr Tom Klose
(Mathematical Institute)
Abstract
The Φ^4_3 measure is one of the easiest non-trivial examples of a Euclidean quantum field theory (EQFT) whose rigorous construction in the 1970's has been one of the celebrated achievements of the Constructive QFT community. In recent years, progress in the field of singular stochastic PDEs, initiated by the theory of regularity structures, has allowed for a new construction of the Φ^4_3 EQFT as the invariant measure of a previously ill-posed Langevin dynamics – a strategy originally proposed by Parisi and Wu ('81) under the name Stochastic Quantisation. In this talk, I will demonstrate that the same idea also allows to transfer the large deviation principle for the Φ^4_3 dynamics, obtained by Hairer and Weber ('15), to the corresponding EQFT. Our strategy is inspired by earlier works of Sowers ('92) and Cerrai and Röckner ('05) for non-singular dynamics and potentially also applies to other EQFT measures. This talk is based on joint work with Avi Mayorcas (University of Bath), see here: arXiv:2402.00975

 
Mon, 04 Nov 2024
15:30
L3

Statistical Inference for weakly interacting diffusions and their mean field limit

Prof Greg Pavliotis
(Imperial College )
Abstract

We consider the problem of parametric and non-parametric statistical inference for systems of weakly interacting diffusions and of their mean field limit. We present several parametric inference methodologies, based on stochastic gradient descent in continuous time, spectral methods and the method of moments. We also show how one can perform fully nonparametric Bayesian inference for the mean field McKean-Vlasov PDE. The effect of non-uniqueness of stationary states of the mean field dynamics on the inference problem is elucidated.

Thu, 05 Dec 2024

12:00 - 13:00
L3

Chaotic flows in polymer solutions: what’s new?

Prof. Rich Kerswell
(University of Cambridge)
Abstract

It is well known that adding even small amounts of  long chain polymers (e.g. few parts per million) to Newtonian solvents can drastically change the flow behaviour by introducing elasticity. In particular,  two decades ago, experiments in curved geometries  demonstrated  that polymer flows can be  chaotic even at vanishingly small Reynolds numbers. The situation in `straight’ flows  such as pressure-driven flow down a channel is less clear  and hence an area of current focus. I will discuss recent progress.

Further Information

Rich Kerswell is a professor in the Department of Applied Mathematics and Theoretical Physics (DAMTP) at the University of Cambridge. His research focuses on fluid dynamics, particularly in the transition to turbulence, geophysical fluid flows, and nonlinear dynamics. Kerswell is known for studying how simple fluid systems can exhibit complex, chaotic behavior and has contributed to understanding turbulence's onset and sustainment in various contexts, including pipes and planetary atmospheres. His work integrates mathematical modeling, theoretical analysis, and computational simulations to explore instabilities and the fundamental mechanisms governing fluid behavior in nature and industry.

Subscribe to L3