Mon, 20 May 2019

15:45 - 16:45
L3

Low degree approximation of real singularities

ANTONIO LERARIO
(SISSA ITALY)
Abstract

In this talk I will discuss some recent results that allow to approximate a real singularity given by polynomial equations of degree d (e.g. the zero set of a polynomial, or the number of its critical points of a given Morse index) with a singularity which is diffeomorphic to the original one, but it is given by polynomials of degree O(d^(1/2)log d).
The approximation procedure is constructive (in the sense that one can read the approximating polynomial from a linear projection of the given one) and quantitative (in the sense that the approximating procedure will hold for a subset of the space of polynomials with measure increasing very quickly to full measure as the degree goes toinfinity).

The talk is based on joint works with P. Breiding, D. N. Diatta and H. Keneshlou      

Mon, 13 May 2019

14:15 - 15:45
L3

Solving nonlinear PDE's in the presence of singular randomness.

NIKOLAY TZETKOB
(University of Clergy France)
Abstract

We will start by presenting two basic probabilistic effects for questions concerning the regularity of functions and nonlinear operations on functions. We will then overview well-posedenss results for the nonlinear wave equation, the nonlinear Schr\"odinger equation and the nonlinear heat equation, in the presence of singular randomness.

Mon, 29 Apr 2019

15:45 - 16:45
L3

Inference of a large rank-one matrix and Hamilton-Jacobi equations

JEAN-CHRISTOPHE MOURRAT
(ENS FRANCE)
Abstract

We observe a noisy version of a large rank-one matrix. Depending on the strength of the noise, can we recover non-trivial information on the matrix? This problem, interesting on its own, will be motivated by its link with a "spin glass" model, which is a model of statistical mechanics where a large number of variables interact with one another, with random interactions that can be positive or negative. The resolution of the initial question will involve a Hamilton-Jacobi equation

Mon, 29 Apr 2019

14:15 - 15:15
L3

Scaling limits and surface tension for gradient Gibbs measure

WEI WU
(Warwick University)
Abstract

I will discuss new results for the gradient field models with uniformly convex potential (also known as the Ginzburg-Landau field). A connection between the scaling limits of the field and elliptic homogenization was introduced by Naddaf and Spencer in 1997. We quantify the existing central limit theorems in light of recent advances in quantitative homogenization; and positively settle a conjecture of Funaki and Spohn about the surface tension. Joint work with Scott Armstrong. 

 

Thu, 20 Jun 2019

13:00 - 14:00
L3

Spectral methods for certain inverse problems on graphs and time series data

Mihai Cucuringu
(Statistics Oxford University)
Further Information

We study problems that share an important common feature: they can all be solved by exploiting the spectrum of their corresponding graph Laplacian. We first consider a classic problem in data analysis and machine learning, of establishing a statistical ranking of a set of items given a set of inconsistent and incomplete pairwise comparisons. We formulate the above problem of ranking with incomplete noisy information as an instance of the group synchronization problem over the group SO(2) of planar rotations, whose least-squares solution can be approximated by either a spectral or a semidefinite programming relaxation, and consider an application to detecting leaders and laggers in financial multivariate time series data. An instance of the group synchronization problem over Z_2 with anchor information is broadly applicable to settings where one has available a sparse signal such as positive or negative news sentiment for a subset of nodes, and would like to understand how the available measurements propagate to the remaining nodes of the network. We also present a simple spectral approach to the well-studied constrained clustering problem, which captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. This line of work extends to the setting of clustering signed networks and correlation clustering, where the edge weights between the nodes of the graph may take either positive or negative values, for which we provide theoretical guarantees in the setting of a signed stochastic block model and numerical experiments for financial correlation matrices. Finally, we discuss a spectral clustering algorithm for directed graphs based on a complex-valued representation of the adjacency matrix, motivated by the application of extracting cluster-based lead-lag relationships in time series data.
 

Thu, 16 May 2019

14:00 - 15:00
L3

Self-dual cuspidal and supercuspidal representations

Jeff Adler
(American University)
Abstract

According to the Harish-Chandra philosophy, cuspidal representations are the basic building blocks in the representation theory of finite reductive groups.  Similarly for supercuspidal representations of p-adic groups.  Self-dual representations play a special role in the study of parabolic induction.  Thus, it is of interest to know whether self-dual (super)cuspidal representations exist.  With a few exceptions involving some small fields, I will show precisely when a finite reductive group has irreducible cuspidal representations that are self-dual, of Deligne-Lusztig type, or both.  Then I will look at implications for the existence of irreducible, self-dual supercuspidal representations of p-adic groups.  This is joint work with Manish Mishra.

Tue, 18 Jun 2019

15:30 - 16:30
L3

Noncommutative geometry from generalized Kahler structures

Marco Gualtieri
(University of Toronto)
Abstract

After reviewing our recent description of generalized Kahler structures in terms of holomorphic symplectic Morita equivalence, I will describe how this can be used for explicit constructions of toric generalized Kahler metrics.  Then I will describe how these ideas, combined with concepts from geometric quantization, provide a new approach to noncommutative algebraic geometry.

Fri, 07 Jun 2019

14:00 - 15:00
L3

Mechanobiology of cell migration: mathematical modelling and microfluidics-based experiments go hand-in-hand

Dr Jose Manuel Garcia Aznar
(Dept of Mechanical Engineering University of Zaragoza)
Abstract

Mechanobiology is a field of science that aims to understand how mechanics regulate biology. It focuses on how mechanical forces and alterations in mechanical properties of cell or tissues regulate biological processes in development, physiology and disease. In fact, all these processes occur in our body, which presents a clear structural and hierarchical organization that goes from the organism to the cellular level. To advance in the understanding of all these processes at different scales requires the use of simplified representations of our body, which is normally known as modelling or equivalently the creation of a model. Different types of models can be found in the literature: in-vitro, in-vivo and in-silico models.

Here, I will present our modelling strategy in which we integrate different mathematical models and experiments in order to tackle relevant mechanical-based mechanisms in wound healing and cancer metastasis progression [1,2]. In fact, we have focused our research on individual [3] and collective cell migration [4], because it is a crucial event in all these mechanisms. Therefore, unravelling the intrinsic mechanisms that cells use to define their migration is an essential element for advancing the development of new technologies in regenerative medicine and cancer.

Due to the complexity of all these mechanisms, mathematical modelling is a relevant tool for providing deeper insight and quantitative predictions of the mechanical interplay between cells and extracellular matrix during cell migration. To assess the predictive capacity of these models, we will compare our numerical results with microfluidic-based experiments [2], which provide experimental information to test and refine the main assumptions of our models.

Actually, we design and fabricate multi-channel 3D microfluidics cell culture chips, which allow recreating the physiology and disease of one organ or any biological process with a precise control of the micro environmental factors [5]. Therefore, this kind of organ-on-a-chip experiments constitutes a novel modelling strategy of in vitro multicellular human systems that in combination with mathematical simulations provide a relevant tool for research in mechanobiology.

References

Escribano J, Chen M, Moeendarbary E, Cao X, Shenoy V, Garcia-Aznar JM, Kamm RD, Spill F.  Balance of Mechanical Forces Drives Endothelial Gap Formation and May Facilitate Cancer and Immune-Cell Extravasation. PLOS Computational Biology, in press.

Subscribe to L3