Thu, 14 Nov 2024

17:00 - 18:00
L3

The Borel monadic theory of order is decidable

Sven Manthe
(University of Bonn)
Abstract

The monadic second-order theory S1S of (ℕ,<) is decidable (it essentially describes ω-automata). Undecidability of the monadic theory of (ℝ,<) was proven by Shelah. Previously, Rabin proved decidability if the monadic quantifier is restricted to Fσ-sets.
We discuss decidability for Borel sets, or even σ-combinations of analytic sets. Moreover, the Boolean combinations of Fσ-sets form an elementary substructure. Under determinacy hypotheses, the proof extends to larger classes of sets.

Thu, 07 Nov 2024

17:00 - 18:00
L3

Ramification Theory for Henselian Valued Fields

Vaidehee Thatte
(King's College London)
Abstract

Ramification theory serves the dual purpose of a diagnostic tool and treatment by helping us locate, measure, and treat the anomalous behavior of mathematical objects. In the classical setup, the degree of a finite Galois extension of "nice" fields splits up neatly into the product of two well-understood numbers (ramification index and inertia degree) that encode how the base field changes. In the general case, however, a third factor called the defect (or ramification deficiency) can pop up. The defect is a mysterious phenomenon and the main obstruction to several long-standing open problems, such as obtaining resolution of singularities. The primary reason is, roughly speaking, that the classical strategy of "objects become nicer after finitely many adjustments" fails when the defect is non-trivial. I will discuss my previous and ongoing work in ramification theory that allows us to understand and treat the defect.

Tue, 12 Nov 2024

13:00 - 14:00
L3

Mathematrix: Short Talks by PhD Students

Abstract

Several PhD students from the department will give short 5 minute talks on their research. This is also targeted at undergraduates interested in doing PhDs .

Thu, 31 Oct 2024
16:00
L3

Cusp forms of level one and weight zero

George Boxer
(Imperial College London)
Abstract
A theme in number theory is the non-existence of objects which are "too unramified".  For instance, by Minkowski there are no everywhere unramified extensions of Q, and by Fontaine and Abrashkin there are no abelian varieties over Q with everywhere good reduction.  Such results may be viewed (possibly conditionally) through the lens of the Stark-Odlyzko positivity method in the theory of L-functions.
 
After reviewing these things, I will turn to the question of this talk: for n>1 do there exist cuspidal automorphic forms for GL_n which are everywhere unramified and have lowest regular weight (cohomological weight 0)?  For n=2 these are more familiarly holomorphic cuspforms of level 1 and weight 2.  This question may be rephrased in terms of the existence of cuspidal cohomology of GL_n(Z) or (at least conjecturally) in terms of the existence of certain motives or Galois representations.  In 1997, Stephen Miller used the positivity method to show that they do not exist for n<27.  In the other direction, in joint work with Frank Calegari and Toby Gee, we prove that they do exist for some n, including n=79,105, and 106.
Mon, 14 Oct 2024
15:30
L3

A Mean Field Game approach for pollution regulation of competitive firms

Dr Giulia Livieri
(LSE)
Abstract

We develop a model based on mean-field games of competitive firms producing similar goods according to a standard AK model with a depreciation rate of capital generating pollution as a byproduct. Our analysis focuses on the widely-used cap-and-trade pollution regulation. Under this regulation, firms have the flexibility to respond by implementing pollution abatement, reducing output, and participating in emission trading, while a regulator dynamically allocates emission allowances to each firm. The resulting mean-field game is of linear quadratic type and equivalent to a mean-field type control problem, i.e., it is a potential game. We find explicit solutions to this problem through the solutions to differential equations of Riccati type. Further, we investigate the carbon emission equilibrium price that satisfies the market clearing condition and find a specific form of FBSDE of McKean-Vlasov type with common noise. The solution to this equation provides an approximate equilibrium price. Additionally, we demonstrate that the degree of competition is vital in determining the economic consequences of pollution regulation.

 

This is based on joint work with Gianmarco Del Sarto and Marta Leocata. 

https://arxiv.org/pdf/2407.12754

Fri, 22 Nov 2024
11:00
L3

Joint seminar with Mathematical Biology and Ecology Seminar: Bifurcations, pattern formation and multi-stability in non-local models of interacting species

Dr Valeria Giunta
(Dept. of Maths, Swansea University)
Abstract

Understanding the mechanisms behind the spatial distribution, self-organisation and aggregation of organisms is a central issue in both ecology and cell biology. Since self-organisation at the population level is the cumulative effect of behaviours at the individual level, it requires a mathematical approach to be elucidated.
In nature, every individual, be it a cell or an animal, inspects its territory before moving. The process of acquiring information from the environment is typically non-local, i.e. individuals have the ability to inspect a portion of their territory. In recent years, a growing body of empirical research has shown that non-locality is a key aspect of movement processes, while mathematical models incorporating non-local interactions have received increasing attention for their ability to accurately describe how interactions between individuals and their environment can affect their movement, reproduction rate and well-being. In this talk, I will present a study of a class of advection-diffusion equations that model population movements generated by non-local species interactions. Using a combination of analytical and numerical tools, I will show that these models support a wide variety of spatio-temporal patterns that are able to reproduce segregation, aggregation and time-periodic behaviours commonly observed in real systems. I will also show the existence of parameter regions where multiple stable solutions coexist and hysteresis phenomena.
Overall, I will describe various methods for analysing bifurcations and pattern formation properties of these models, which represent an essential mathematical tool for addressing fundamental questions about the many aggregation phenomena observed in nature.

Thu, 24 Oct 2024
17:00
L3

Generic central sequence properties in II$_1$ factors

Jenny Pi
(University of Oxford)
Abstract

Von Neumann algebras which are not matrix algebras, yet still possess a unique trace, form a basic class called II$_1$ factors. The set of asymptotically commuting elements (or, the relative commutant of the algebra within its own ultrapower), dubbed the central sequence algebra, can take many different forms. In this talk, we discuss an elementary class of II$_1$ factors whose central sequence algebra is again a II$_1$ factor. We show that the class of infinitely generic II$_1$ factors possess this property, and ask some related questions about properties of other existentially closed II$_1$ factors. This is based on joint work with Isaac Goldbring, David Jekel, and Srivatsav Kunnawalkam Elayavalli.

Thu, 17 Oct 2024
17:00
L3

Definable convolution and idempotent Keisler measures

Kyle Gannon (Peking University)
Abstract

Given a locally compact topological group, there is a correspondence between idempotent probability measures and compact subgroups. An analogue of this correspondence continues into the model theoretic setting. In particular, if G is a stable group, then there is a one-to-one correspondence between idempotent Keisler measures and type-definable subgroups. The proof of this theorem relies heavily on the theory of local ranks in stability theory. Recently, we have been able to extend a version of this correspondence to the abelian setting. Here, we prove that fim idempotent Keisler measures correspond to fim subgroups. These results rely on recent work of Conant, Hanson and myself connecting generically stable measures to generically stable types over the randomization. This is joint work with Artem Chernikov and Krzysztof Krupinski.

Thu, 07 Nov 2024
16:00
L3

E-functions and their roots

Peter Jossen
(King's College London)
Abstract
E-functions are a special class of entire function given by power series with algebraic coefficients, particular examples of which are the exponential function or Bessel functions. They were introduced by Siegel in the 1930's.
 
While special values of E-functions are relatively well understood, their roots remain mysterious in many ways. I will explain how roots of E-functions are distributed in the complex plane (essentially a Theorem of Pólya), and discuss a couple of related questions and conjectures. From the roots of an E-function one may also fabricate a "spectral" zeta function, which turns out to have some interesting properties.
Mon, 28 Oct 2024
15:30
L3

Higher Order Lipschitz Functions in Data Science

Dr Andrew Mcleod
(Mathematical Institute)
Abstract

The notion of Lip(gamma) Functions, for a parameter gamma > 0, introduced by Stein in the 1970s (building on earlier work of Whitney) is a notion of smoothness that is well-defined on arbitrary closed subsets (including, in particular, finite subsets) that is instrumental in the area of Rough Path Theory initiated by Lyons and central in recent works of Fefferman. Lip(gamma) functions provide a higher order notion of Lipschitz regularity that is well-defined on arbitrary closed subsets, and interacts well with the more classical notion of smoothness on open subsets. In this talk we will survey the historical development of Lip(gamma) functions and illustrate some fundamental properties that make them an attractive class of function to work with from a machine learning perspective. In particular, models learnt within the class of Lip(gamma) functions are well-suited for both inference on new unseen input data, and for allowing cost-effective inference via the use of sparse approximations found via interpolation-based reduction techniques. Parts of this talk will be based upon the works https://arxiv.org/abs/2404.06849 and https://arxiv.org/abs/2406.03232.

Subscribe to L3