Mon, 19 Feb 2024
15:30
L4

Maps between spherical group algebras

Thomas Nikolaus
(Universitaet Muenster)
Abstract

I will speak about a central question in higher algebra (aka brave new algebra), namely which rings or schemes admit 'higher models', that is lifts to the sphere spectrum. This question is in some sense very classical, but there are many open questions. These questions are closely related to questions about higher versions of prismatic cohomology and delta ring, asked e.g. by Scholze and Lurie. Concretely we will consider the case of group algebras and explain how to understand maps between lifts of group algebras to the sphere spectrum. The results we present are joint with Carmeli and Yuan and on the prismatic side with Antieau and Krause.

Mon, 29 Jan 2024
15:30
L4

Categorifying the four color theorem with applications to Gromov-Witten theory

Scott Baldridge
(Louisiana State University)
Abstract
The four color theorem states that each bridgeless planar graph has a proper $4$-face coloring. It can be generalized to certain types of CW complexes of any closed surface for any number of colors, i.e., one looks for a coloring of the 2-cells (faces) of the complex with $m$ colors so that whenever two 2-cells are adjacent to a 1-cell (edge), they are labeled different colors.

In this talk, I show how to categorify the $m$-color polynomial of a surface with a CW complex. This polynomial is based upon Roger Penrose’s seminal 1971 paper on abstract tensor systems and can be thought of as the ``Jones polynomial’’ for CW complexes. The homology theory that results from this categorification is called the bigraded $m$-color homology and is based upon a topological quantum field theory (that will be suppressed from this talk due to time). The construction of this homology shares some similar features to the construction of Khovanov homology—it has a hypercube of states, multiplication and comultiplication maps, etc. Most importantly, the homology is the $E_1$ page of a spectral sequence whose $E_\infty$ page has a basis that can be identified with proper $m$-face colorings, that is, each successive page of the sequence provides better approximations of $m$-face colorings than the last. Since it can be shown that the $E_1$ page is never zero, it is safe to say that a non-computer-based proof of the four color theorem resides in studying this spectral sequence! (This is joint work with Ben McCarty.)

If time, I will relate this work to the study of the moduli space of stable genus $g$ curves with $n$ marked points. Using Strebel quadratic differentials, one can identify this moduli space with a subspace of the space of metric ribbon graphs with labeled boundary components. Proper $m$-face coloring in this setup is, in a sense, studying points in the space of metric ribbon graphs where similarly-colored boundaries (marked points) don’t get ``too close’’ to each other. We will end with some speculations about what this might mean for Gromov-Witten theory of Calabi-Yau manifolds.
 
Note to students: This talk will be hands-on with ideas explained through the calculation of examples. Graduate students and researchers who are interested in graph theory, topology, or representation theory are encouraged to attend.   
 
Mon, 03 Jun 2024

16:30 - 17:30
L4

On the well-possedness of time-dependent three-dimensional Euler fluid flows

Josef Malek
(Mathematics Faculty at the Charles University in Prague)
Abstract

We study the mathematical properties of time-dependent flows of incompressible fluids that respond as an Euler fluid until the modulus of the symmetric part of the velocity gradient exceeds a certain, a-priori given but arbitrarily large, critical value. Once the velocity gradient exceeds this threshold, a dissipation mechanism is activated. Assuming that the fluid, after such an activation, dissipates the energy in a specific manner, we prove that the corresponding initial-boundary-value problem is well-posed in the sense of Hadamard. In particular, we show that for an arbitrary, sufficiently regular, initial velocity there is a global-in-time unique weak solution to the spatially-periodic problem. This is a joint result with Miroslav Bulíček. 

Mon, 22 Apr 2024

16:30 - 17:30
L4

The curvature-dimension condition and the measure contraction property in sub-Finsler geometry.

Tommaso Rossi
(INRIA)
Abstract

The curvature-dimension condition, CD(K,N) for short, and the (weaker) measure contraction property, or MCP(K,N), are two synthetic notions for a metric measure space to have Ricci curvature bounded from below by K and dimension bounded from above by N. In this talk, we investigate the validity of these conditions in sub-Finsler geometry, which is a wide generalization of Finsler and sub-Riemannian geometry. Firstly, we show that sub-Finsler manifolds equipped with a smooth strongly convex norm and with a positive smooth measure can not satisfy the CD(K,N) condition for any K and N. Secondly, we focus on the sub-Finsler Heisenberg group, where we show that, on the one hand, the CD(K,N) condition can not hold for any reference norm and, on the other hand, the MCP(K,N) may hold or fail depending on the regularity of the reference norm. 

Fri, 19 Jan 2024

15:00 - 16:00
L4

The Function-Rips Multifiltration as an Estimator

Steve Oudot
(INRIA - Ecole Normale Supérieure)
Abstract

Say we want to view the function-Rips multifiltration as an estimator. Then, what is the target? And what kind of consistency, bias, or convergence rate, should we expect? In this talk I will present on-going joint work with Ethan André (Ecole Normale Supérieure) that aims at laying the algebro-topological ground to start answering these questions.

Thu, 30 Nov 2023
15:00
L4

A gentle introduction to Ricci flow

John Hughes
(University of Oxford)
Abstract

Richard Hamilton introduced the Ricci flow as a way to study the Poincaré conjecture, which says that every simply connected, compact three-manifold is homeomorphic to the three-sphere. In this talk, we will introduce the Ricci flow in a way that is accessible to anyone with basic knowledge of Riemannian geometry. We will give some examples, discuss finite time singularities, and give an application to a theorem of Hamilton which says that every compact Riemannian 3-manifold with positive Ricci curvature admits a metric of constant positive sectional curvature.

Thu, 16 Nov 2023
15:00
L4

Compactness problems in new gauge theories

Alfred Holmes
(University of Oxford)
Abstract

Two areas of current research in Mathematical Gauge Theory are the study of higher dimensional instantons on manifolds with special holonomy (for example, Calabi-Yau three folds, Gand Spin(7) manifolds), and low dimensional gauge theories (for example the Kapustin-Witten, Haydys-Witten and ADHM Seiberg-Witten equations). A common feature of these two sets of theories is that the moduli spaces of solutions are in general not compact. In both cases, compactness issues arise because of solutions to a certain non-linear equation called the Fueter equation. In this talk, I'll explain how this non compactness gives a relationship between these high and low dimensional gauge theories.

Thu, 02 Nov 2023
15:00
L4

Generalising fat bundles and positive curvature

Alberto Rodriguez Vazquez
(KU Leuven)
Abstract

Alan Weinstein, introduced the concept of "fat bundle" as a tool to understand when the total space of a fiber bundle with totally geodesic fibers allows a metric with positive sectional curvature. 

In recent times, certain weaker notions than the condition of having a metric with positive sectional curvature have been studied due to the apparent scarcity of spaces that meet this condition. Positive kth-intermediate Ricci curvature (Rick > 0) on a Riemannian manifold Mn is a condition that bridges the gap between positive sectional curvature and positive Ricci curvature. Indeed, when k = 1, this condition corresponds to positive sectional curvature, and when k = n−1, it corresponds to positive Ricci curvature. 

In this talk, I will discuss an ongoing project with Miguel Domínguez Vázquez, David González-Álvaro, and Jason DeVito, which aims to create new examples of compact Riemannian manifolds with Ric2 > 0. We achieve this by employing a certain generalisation of the "fat bundle" concept.

Mon, 27 Nov 2023
15:30
L4

Costabilisation of telescopic spectral Lie algebras

Yuqing Shi
(Max Planck Institute for Mathematics)
Abstract

One can think of the stabilisation of an ∞-category as the ∞-category of objects that admit infinite deloopings. For example, the ∞-category of spectra is the stabilisation of the ∞-category of homotopy types. Costabilisation is the opposite notion of stabilisation, where we are interested in objects that allow infinite desuspensions. It is easy to see that the costabilisation of the ∞-category of homotopy types is trivial. Fix a prime number p. In this talk I will show that the costablisation of the ∞-category of T(h)-local spectral Lie algebras is equivalent to the ∞-category of T(h)-local spectra, where T(h) denotes a p-local telescope spectrum of height h. A key ingredient of the proof is to relate spectral Lie algebras to (spectral) Eₙ algebras via Koszul duality.
 

Mon, 12 Feb 2024
14:15
L4

Palais-Smale sequences for the prescribed Ricci curvature functional

Artem Pulemotov
(University of Queensland, Australia)
Abstract

On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with the critical points of the scalar curvature functional subject to a constraint. We provide a complete description of Palais--Smale sequences for this functional. As an application, we obtain new existence results for the prescribed Ricci curvature equation, which enables us to observe previously unseen phenomena. Joint work with Wolfgang Ziller (University of Pennsylvania).

Subscribe to L4