Mon, 03 Jun 2024

16:30 - 17:30
L4

On the well-possedness of time-dependent three-dimensional Euler fluid flows

Josef Malek
(Mathematics Faculty at the Charles University in Prague)
Abstract

We study the mathematical properties of time-dependent flows of incompressible fluids that respond as an Euler fluid until the modulus of the symmetric part of the velocity gradient exceeds a certain, a-priori given but arbitrarily large, critical value. Once the velocity gradient exceeds this threshold, a dissipation mechanism is activated. Assuming that the fluid, after such an activation, dissipates the energy in a specific manner, we prove that the corresponding initial-boundary-value problem is well-posed in the sense of Hadamard. In particular, we show that for an arbitrary, sufficiently regular, initial velocity there is a global-in-time unique weak solution to the spatially-periodic problem. This is a joint result with Miroslav Bulíček. 

Mon, 22 Apr 2024

16:30 - 17:30
L4

The curvature-dimension condition and the measure contraction property in sub-Finsler geometry.

Tommaso Rossi
(INRIA)
Abstract

The curvature-dimension condition, CD(K,N) for short, and the (weaker) measure contraction property, or MCP(K,N), are two synthetic notions for a metric measure space to have Ricci curvature bounded from below by K and dimension bounded from above by N. In this talk, we investigate the validity of these conditions in sub-Finsler geometry, which is a wide generalization of Finsler and sub-Riemannian geometry. Firstly, we show that sub-Finsler manifolds equipped with a smooth strongly convex norm and with a positive smooth measure can not satisfy the CD(K,N) condition for any K and N. Secondly, we focus on the sub-Finsler Heisenberg group, where we show that, on the one hand, the CD(K,N) condition can not hold for any reference norm and, on the other hand, the MCP(K,N) may hold or fail depending on the regularity of the reference norm. 

Fri, 19 Jan 2024

15:00 - 16:00
L4

The Function-Rips Multifiltration as an Estimator

Steve Oudot
(INRIA - Ecole Normale Supérieure)
Abstract

Say we want to view the function-Rips multifiltration as an estimator. Then, what is the target? And what kind of consistency, bias, or convergence rate, should we expect? In this talk I will present on-going joint work with Ethan André (Ecole Normale Supérieure) that aims at laying the algebro-topological ground to start answering these questions.

Thu, 30 Nov 2023
15:00
L4

A gentle introduction to Ricci flow

John Hughes
(University of Oxford)
Abstract

Richard Hamilton introduced the Ricci flow as a way to study the Poincaré conjecture, which says that every simply connected, compact three-manifold is homeomorphic to the three-sphere. In this talk, we will introduce the Ricci flow in a way that is accessible to anyone with basic knowledge of Riemannian geometry. We will give some examples, discuss finite time singularities, and give an application to a theorem of Hamilton which says that every compact Riemannian 3-manifold with positive Ricci curvature admits a metric of constant positive sectional curvature.

Thu, 16 Nov 2023
15:00
L4

Compactness problems in new gauge theories

Alfred Holmes
(University of Oxford)
Abstract

Two areas of current research in Mathematical Gauge Theory are the study of higher dimensional instantons on manifolds with special holonomy (for example, Calabi-Yau three folds, Gand Spin(7) manifolds), and low dimensional gauge theories (for example the Kapustin-Witten, Haydys-Witten and ADHM Seiberg-Witten equations). A common feature of these two sets of theories is that the moduli spaces of solutions are in general not compact. In both cases, compactness issues arise because of solutions to a certain non-linear equation called the Fueter equation. In this talk, I'll explain how this non compactness gives a relationship between these high and low dimensional gauge theories.

Thu, 02 Nov 2023
15:00
L4

Generalising fat bundles and positive curvature

Alberto Rodriguez Vazquez
(KU Leuven)
Abstract

Alan Weinstein, introduced the concept of "fat bundle" as a tool to understand when the total space of a fiber bundle with totally geodesic fibers allows a metric with positive sectional curvature. 

In recent times, certain weaker notions than the condition of having a metric with positive sectional curvature have been studied due to the apparent scarcity of spaces that meet this condition. Positive kth-intermediate Ricci curvature (Rick > 0) on a Riemannian manifold Mn is a condition that bridges the gap between positive sectional curvature and positive Ricci curvature. Indeed, when k = 1, this condition corresponds to positive sectional curvature, and when k = n−1, it corresponds to positive Ricci curvature. 

In this talk, I will discuss an ongoing project with Miguel Domínguez Vázquez, David González-Álvaro, and Jason DeVito, which aims to create new examples of compact Riemannian manifolds with Ric2 > 0. We achieve this by employing a certain generalisation of the "fat bundle" concept.

Mon, 27 Nov 2023
15:30
L4

Costabilisation of telescopic spectral Lie algebras

Yuqing Shi
(Max Planck Institute for Mathematics)
Abstract

One can think of the stabilisation of an ∞-category as the ∞-category of objects that admit infinite deloopings. For example, the ∞-category of spectra is the stabilisation of the ∞-category of homotopy types. Costabilisation is the opposite notion of stabilisation, where we are interested in objects that allow infinite desuspensions. It is easy to see that the costabilisation of the ∞-category of homotopy types is trivial. Fix a prime number p. In this talk I will show that the costablisation of the ∞-category of T(h)-local spectral Lie algebras is equivalent to the ∞-category of T(h)-local spectra, where T(h) denotes a p-local telescope spectrum of height h. A key ingredient of the proof is to relate spectral Lie algebras to (spectral) Eₙ algebras via Koszul duality.
 

Mon, 12 Feb 2024
14:15
L4

Palais-Smale sequences for the prescribed Ricci curvature functional

Artem Pulemotov
(University of Queensland, Australia)
Abstract

On homogeneous spaces, solutions to the prescribed Ricci curvature equation coincide with the critical points of the scalar curvature functional subject to a constraint. We provide a complete description of Palais--Smale sequences for this functional. As an application, we obtain new existence results for the prescribed Ricci curvature equation, which enables us to observe previously unseen phenomena. Joint work with Wolfgang Ziller (University of Pennsylvania).

Mon, 06 Nov 2023
15:30
L4

Understanding infinite groups via their actions on Banach spaces

Cornelia Drutu
((Oxford University) )
Abstract

One way of studying infinite groups is by analysing
 their actions on classes of interesting spaces. This is the case
 for Kazhdan's property (T) and for Haagerup's property (also called a-T-menability),
 formulated in terms of actions on Hilbert spaces and relevant in many areas
(e.g. for the Baum-Connes conjectures, in combinatorics, for the study of expander graphs, in ergodic theory, etc.)
 
Recently, these properties have been reformulated for actions on Banach spaces,
with very interesting results. This talk will overview some of these reformulations
 and their applications. Part of the talk is on joint work with Ashot Minasyan and Mikael de la Salle, and with John Mackay.
 

Mon, 09 Oct 2023
14:15
L4

How homotopy theory helps to classify algebraic vector bundles

Mura Yakerson
(Oxford)
Abstract

Classically, topological vector bundles are classified by homotopy classes of maps into infinite Grassmannians. This allows us to study topological vector bundles using obstruction theory: we can detect whether a vector bundle has a trivial subbundle by means of cohomological invariants. In the context of algebraic geometry, one can ask whether algebraic vector bundles over smooth affine varieties can be classified in a similar way. Recent advances in motivic homotopy theory give a positive answer, at least over an algebraically closed base field. Moreover, the behaviour of vector bundles over general base fields has surprising connections with the theory of quadratic forms.

Subscribe to L4