Mon, 12 May 2025
16:30
L4

Viscoelastic models for tumour growth

Dennis Trautwein
(Uni-Regensburg)
Abstract

In this talk, we present a mathematical model for tumour growth that incorporates viscoelastic effects. Starting from a basic system of PDEs, we gradually introduce the relevant biological and physical mechanisms and explain how they are integrated into the model. The resulting system features a Cahn--Hilliard type equation for the tumour cells coupled to a convection-reaction-diffusion equation for a nutrient species, and a viscoelastic subsystem for an internal velocity.
Key biological processes such as active transport, apoptosis, and proliferation are modeled via source and sink terms as well as cross-diffusion effects. The viscoelastic behaviour is described using the Oldroyd-B model, which is based on a multiplicative decomposition of the deformation gradient to account for elasticity alongside growth and relaxation effects.
We will highlight several of these effects through numerical simulations.
Moreover, we discuss the main analytical and numerical challenges. Particular focus will be given to the treatment of source and cross-diffusion terms, the elastic energy density, and the difficulties arising from the viscoelastic subsystem. The main analytical result is the global-in-time existence of weak solutions in two spatial dimensions, under the assumption of additional viscoelastic diffusion in the Oldroyd-B equation.
This work is based on joint work with Harald Garcke (University of Regensburg, Germany) and Balázs Kovács (University of Paderborn, Germany).

Mon, 28 Apr 2025
16:30
L4

Wave localization at subwavelength scales

Habib Amari
(ETH)
Abstract

Systems of high-contrast resonators can be used to control and manipulate wave-matter interactions at scales that are much smaller than the operating wavelengths. The aim of this talk is to review recent studies of ordered and disordered systems of subwavelength resonators and to explain some of their topologically protected localization properties. Both reciprocal and non-reciprocal systems will be considered.
 

Mon, 17 Mar 2025
16:30
L4

Bloch-Torrey PDE in NMR and completely monotone functions.

Yury Grabovsky
(Temple Mathematics)
Abstract

In the first half of the talk I will review the theory of nuclear magnetic resonance (NMR), leading to the Bloch-Torrey PDE. I will then describe the pulsed-gradient spin-echo method for measuring the Fourier transform of the voxel-averaged propagator of the Bloch-Torrey equation.  This technique permits one to compute the diffusion coefficient in a voxel. For complex biological tissue, as in the brain, the standard model represents spin-echo as a multiexponential signal, whose exponents and coefficients describe the diffusion coefficients and volume fractions of isolated tissue compartments, respectively. The question of identifying these parameters from experimental measurements leads us to investigate the degree of well-posedness of this problem that I will discuss in the second half of the talk. We show that the parameter reconstruction problem exhibits power law transition to ill-posedness, and derive the explicit formula for the exponent by reformulating the problem in terms of the integral equation that can be solved explicitly. This is a joint work with my Ph.D. student Henry J. Brown.

Tue, 18 Feb 2025

14:00 - 15:00
L4

Cube-root concentration of the chromatic number of $G(n,1/2)$ – sometimes

Oliver Riordan
(University of Oxford)
Abstract
A classical question in the theory of random graphs is 'how much does the chromatic number of $G(n,1/2)$ vary?' For example, roughly what is its standard deviation $\sigma_n$? An old argument of Shamir and Spencer gives an upper bound of $O(\sqrt{n})$, improved by a logarithmic factor by Alon. For general $n$, a result with Annika Heckel implies that $n^{1/2}$ is tight up to log factors. However, according to the 'zig-zag' conjecture $\sigma_n$ is expected to vary between $n^{1/4+o(1)}$ and $n^{1/2+o(1)}$ as $n$ varies. I will describe recent work with Rob Morris, building on work of Bollobás, Morris and Smith, giving an $O^*(n^{1/3})$ upper bound for certain values of $n$, the first bound beating $n^{1/2-o(1)}$, and almost matching the zig-zag conjecture for these $n$. The proof uses martingale methods, the entropy approach of Johansson, Kahn and Vu, the second moment method, and a new (we believe) way of thinking about the distribution of the independent sets in $G(n,1/2)$.
Fri, 07 Mar 2025
15:00
L4

Central limit theorems and the smoothed bootstrap in topological data analysis

Johannes Krebs
(Katholische Universitat Eichstätt-Ingolstadt)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract
We study central limit theorems for persistent Betti numbers and the Euler characteristic of random simplicial complexes built from Poisson and Binomial processes in the critical regime. The approach relies on the idea of stabilizing functionals and dates back to Kesten and Lee (1996) as well as Penrose and Yukich (2001).
However, in many situations such limit theorems prove difficult to use in practice, motivating the use of a bootstrap approach, a resampling technique in mathematical statistics. To this end, we investigate multivariate bootstrap procedures for general stabilizing statistics with a specific focus on the application to topological data analysis. We show that a smoothed bootstrap procedure gives a consistent estimation. Specific statistics considered for the bootstrap include persistent Betti numbers and Euler characteristics of Čech and Vietoris-Rips complexes.
Fri, 07 Feb 2025
15:00
L4

Decomposing Multiparameter Persistence Modules

Jan Jendrysiak
(TU Graz)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

Dey and Xin (J. Appl.Comput.Top. 2022) describe an algorithm to decompose finitely presented multiparameter persistence modules using a matrix reduction algorithm. Their algorithm only works for modules whose generators and relations are distinctly graded. We extend their approach to work on all finitely presented modules and introduce several improvements that lead to significant speed-ups in practice.


Our algorithm is FPT with respect to the maximal number of relations with the same degree and with further optimisation we obtain an O(n3) algorithm for interval-decomposable modules. As a by-product to the proofs of correctness we develop a theory of parameter restriction for persistence modules. Our algorithm is implemented as a software library aida which is the first to enable the decomposition of large inputs.

This is joint work with Tamal Dey and Michael Kerber.

Fri, 14 Feb 2025
15:00
L4

Distance-from-flat persistent homology transforms

Nina Otter
(Inria Saclay)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract
The persistent homology transform (PHT) was introduced in the field of Topological Data Analysis about 10 years ago, and has since been proven to be a very powerful descriptor of Euclidean shapes. The PHT consists of scanning a shape from all possible directions and then computing the persistent homology of sublevel set filtrations of the respective height functions; this results in a sufficient and continuous descriptor of Euclidean shapes. 
 
In this talk I will introduce a generalisation of the PHT in which we consider arbitrary parameter spaces and sublevel-set filtrations with respect to any function. In particular, we study transforms, defined on the Grassmannian AG(m,n) of affine subspaces of n-dimensional Euclidean space, which allow to scan a shape by probing it with all possible affine m-dimensional subspaces P, for fixed dimension m, and by then computing persistent homology of sublevel-set filtrations of the function encoding the distance from the flat P. We call such transforms "distance-from-flat PHTs". I will discuss how these transforms generalise known examples, how they are sufficient descriptors of shapes and finally present their computational advantages over the classical persistent homology transform introduced by Turner-Mukherjee-Boyer. 
Wed, 12 Mar 2025
11:00
L4

Uniqueness of Dirichlet operators related to stochastic quantisation for the exp(φ)_{2}-model

Hiroshi Kawabi
(Keio University)
Abstract

In this talk, we consider Dirichlet forms related to stochastic quantisation for the exp(φ)_{2}-model on the torus. We show strong uniqueness of the corresponding Dirichlet operators by applying an idea of (singular) SPDEs. This talk is based on ongoing joint work with Hirotatsu Nagoji (Kyoto University).

Wed, 05 Mar 2025
11:00
L4

Scaling limits of stochastic transport equations on manifolds

Wei Huang
(Freie Universität Berlin)
Abstract

In this talk, I will present the generalization of scaling limit results for stochastic transport equations on torus by Flandoli, Galeati and Luo, to compact manifolds. We consider the stochastic transport equations driven by colored space-time noise(smooth in space, white in time) on a compact Riemannian manifold without boundary. Then we study the scaling limits of stochastic transport equations, tuning the noise in such a way that the space covariance of the noise on the diagonal goes to identity matrix but the covariance operator itself goes to zero, which includes the large scale analysis regime with diffusive scaling.

We obtain different scaling limits depending on the initial data. With space white noise as initial data, the solutions converge in distribution to the solution of a stochastic heat equation with additive noise. With square integrable initial data, the solutions of transport equation converge to the solution of the deterministic heat equation, and we give quantitative estimates on the convergence rate.

Wed, 26 Feb 2025
11:00
L4

Nonlinear rough Fokker--Planck equations

Fabio Bugini
(Technische Universitat Berlin)
Abstract

We present an existence and uniqueness result for nonlinear Fokker--Planck equations driven by rough paths. These equations describe the evolution of the probability distributions associated with McKean--Vlasov stochastic dynamics under (rough) common noise.  A key motivation comes from the study of interacting particle systems with common noise, where the empirical measure converges to a solution of such a nonlinear equation. 
Our approach combines rough path theory and the stochastic sewing techniques with Lions' differential calculus on Wasserstein spaces.

This is joint work with Peter K. Friz and Wilhelm Stannat.

Subscribe to L4