Mon, 27 Oct 2025

16:30 - 17:30
L4

Spatially-extended mean-field PDEs as universal limits of large, heterogeneous networks of spiking neurons

Dr Valentin Schmutz
(University College London)
Abstract

The dynamics of spatially-structured networks of N interacting stochastic neurons can be described by deterministic population equations in the mean-field limit. While this is known, a general question has remained unanswered: does synaptic weight scaling suffice, by itself, to guarantee the convergence of network dynamics to a deterministic population equation, even when networks are not assumed to be homogeneous or spatially structured? In this work, we consider networks of stochastic integrate-and-fire neurons with arbitrary synaptic weights satisfying a O(1/N) scaling condition. Borrowing results from the theory of dense graph limits, or graphons, we prove that, as N tends to infinity, and up to the extraction of a subsequence, the empirical measure of the neurons' membrane potentials converges to the solution of a spatially-extended mean-field partial differential equation (PDE). Our proof requires analytical techniques that go beyond standard propagation of chaos methods. In particular, we introduce a weak metric that depends on the dense graph limit kernel and we show how the weak convergence of the initial data can be obtained by propagating the regularity of the limit kernel along the dual-backward equation associated with the spatially-extended mean-field PDE. Overall, this result invites us to reinterpret spatially-extended population equations as universal mean-field limits of networks of neurons with O(1/N) synaptic weight scaling. This work was done in collaboration with Pierre-Emmanuel Jabin (Penn State) and Datong Zhou (Sorbonne Université).

Tue, 28 Oct 2025
15:30
L4

Nearly G2-structures and G2-Laplacian co-flows

Jakob Stein
(State University of Campinas and University of Oxford)
Abstract

Nearly $G_2$-structures in dimension seven are, up to scaling, critical points of a geometric flow called (modified) Laplacian co-flow. Moreover, since nearly $G_2$-structures define Einstein metrics, they can also be associated to critical points of the volume-normalised Ricci flow. In this talk, we will discuss a recent joint work with Jason Lotay, showing that many of these nearly $G_2$ critical points are unstable for the modified co-flow, and giving a lower bound on the index.

Tue, 04 Nov 2025
15:30
L4

Intrinsic Donaldson–Thomas theory

Chenjing Bu
(Oxford)
Abstract

In this talk, I will introduce a new framework for working with moduli stacks in enumerative geometry, aimed at generalizing existing theories of enumerative invariants counting objects in linear categories, such as Donaldson–Thomas theory, to general, non-linear moduli stacks. This involves a combinatorial object called the component lattice, which is a globalization of the cocharacter lattice and the Weyl group of an algebraic group.

Several important results and constructions known in linear enumerative geometry can be extended to general stacks using this framework. For example, Donaldson–Thomas invariants can be defined for a general class of stacks, not only linear ones such as moduli stacks of sheaves. As another application, under certain assumptions, the cohomology of a stack, which is often infinite-dimensional, decomposes into finite-dimensional pieces carrying enumerative information, called BPS cohomology, generalizing a result of Davison–Meinhardt in the linear case.

This talk is based on joint works with Ben Davison, Daniel Halpern-Leistner, Andrés Ibáñez Núñez, Tasuki Kinjo, and Tudor Pădurariu.

Wed, 15 Oct 2025
16:00
L4

Pointwise bounds for 3-torsion (note: Wednesday)

Stephanie Chan
(UCL)
Abstract

For $\ell$ an odd prime number and $d$ a squarefree integer, a notable problem in arithmetic statistics is to give pointwise bounds for the size of the $\ell$-torsion of the class group of $\mathbb{Q}(\sqrt{d})$. This is in general a difficult problem, and unconditional pointwise bounds are only available for $\ell = 3$ due to work of Pierce, Helfgott—Venkatesh and Ellenberg—Venkatesh. The current record due to Ellenberg—Venkatesh is $h_3(d) \ll_\epsilon d^{1/3 + \epsilon}$. We will discuss how to improve this to $h_3(d) \ll d^{0.32}$. This is joint work with Peter Koymans.

Tue, 18 Nov 2025
15:30
L4

Logarithms, roots, and negative tangencies

Navid Nabijou
(Queen Mary's London)
Abstract

Logarithmic and orbifold structures provide two independent ways to model curves in a variety with tangency along a normal crossings divisor. The associated systems of Gromov-Witten invariants benefit from complementary techniques; this has motivated extensive interest in comparing the two approaches.

I will report on work in which we establish a complete comparison which, crucially, incorporates negative tangency orders. Negative tangency orders appear naturally in the boundary splitting formalisms of both theories. As such, our comparison opens the way for the wholesale importation of techniques from one side to the other. Work of Sam Johnston uses our comparison to give a new proof of the associativity of the Gross-Siebert intrinsic mirror ring.

Along the way, I will discuss the pathological geometry of negative tangency mapping spaces, and how this can be understood and controlled via tropical geometry. A crucial contribution of our work is the discovery of a "refined virtual class" on the logarithmic moduli space, which gives rise to a distinguished sector of the Gromov-Witten theory.

This is joint work with Luca Battistella and Dhruv Ranganathan.

Mon, 20 Oct 2025

16:30 - 17:30
L4

On non-isothermal flows of dilute incompressible polymeric fluids

Prof Josef Málek
(Faculty of Mathematics and Physics Charles University Prague)
Abstract

 In the first part of the talk, after revisiting some classical models for dilute polymeric fluids, we show that thermodynamically 
consistent models for non-isothermal flows of such fluids can be derived in a very elementary manner. Our approach is based on identifying the 
energy storage mechanisms and entropy production mechanisms in the fluid of interest, which in turn leads to explicit formulae for the Cauchy 
stress tensor and for all the fluxes involved. Having identified these mechanisms, we first derive the governing system of nonlinear partial 
differential equations coupling the unsteady incompressible temperature-dependent Navier–Stokes equations with a 
temperature-dependent generalization of the classical Fokker–Planck equation and an evolution equation for the internal energy. We then 
illustrate the potential use of the thermodynamic basis on a rudimentary stability analysis—specifically, the finite-amplitude (nonlinear) 
stability of a stationary spatially homogeneous state in a thermodynamically isolated system.

In the second part of the talk, we show that sequences of smooth solutions to the initial–boundary-value problem, which satisfy the 
underlying energy/entropy estimates (and their consequences in connection with the governing system of PDEs), converge to weak 
solutions that satisfy a renormalized entropy inequality. The talk is based on joint results with Miroslav Bulíček, Mark Dostalík, Vít Průša 
and Endré Süli.

Subscribe to L4