Mon, 17 Nov 2025
14:15
L4

The co-radical filtration on the Chow group of zero-cycles on hyper-Kähler varieties

Charles Vial
(Bielefeld University)
Abstract

I will discuss an ascending filtration on the Chow group of zero-cycles on a smooth projective variety obtained roughly by considering the successive kernels of the iterates of some modified diagonal embedding of the variety. This filtration is particularly relevant in the case of abelian varieties and of hyper-Kähler varieties, where it is expected to be opposite to the conjectural Bloch-Beilinson filtration. In the case of abelian varieties, it can in fact be described explicitly in terms of the Beauville decomposition, while in the case of hyper-Kähler varieties, I conjecture (and prove in some cases) that it coincides with a filtration introduced earlier by Claire Voisin. As a by-product we obtain in joint work with Olivier Martin a criterion involving second Chern classes for two effective zero-cycles on a moduli space of stable objects on a K3 surface to be rationally equivalent, generalising a result of Marian-Zhao.

Mon, 10 Nov 2025
14:15
L4

On the diffeomorphism classification of a certain family of non-negatively curved 7-manifolds

Martin Kerin
(Durham University)
Abstract

A 2-connected, rational homotopy 7-sphere is classified up to diffeomorphism by three invariants: its (finite) 4th cohomology group, its q-invariant and its Eells-Kuiper invariant.  The q-invariant is a quadratic refinement of the linking form and determines the homeomorphism type, while the Eells-Kuiper invariant then pins down the diffeomorphism type.  In this talk, I will discuss the diffeomorphism classification of a certain family of non-negatively curved, 2-connected, rational homotopy 7-spheres, discovered by Sebastian Goette, Krishnan Shankar and myself, which contains, in particular, all $S^3$-bundles over $S^4$ and all exotic 7-spheres.

Mon, 03 Nov 2025
14:15
L4

Intersection cohomology of symplectic implosions

Andrew Dancer
(Oxford University)
Abstract

Symplectic implosion is an abelianisation construction in symplectic geometry. The implosion of the cotangent bundle of a group K plays a universal role in the implosion of manifolds with a K-action.  This universal implosion, which is usually a singular variety, can also be viewed as the non-reductive Geometric Invariant Theory quotient of the complexification G of K by its maximal unipotent subgroup. 

In this talk, we describe joint work with Johan Martens and Nick Proudfoot which uses point-counting techniques to calculate the intersection cohomology of the universal implosion.

Mon, 27 Oct 2025
14:15
L4

Hurwitz-Brill-Noether Theory via K3 Surfaces

Sohelya Feyzbakhsh
(Imperial College London)
Abstract

I will discuss the Brill-Noether theory of a general elliptic $K3$ surface using wall-crossing with respect to Bridgeland stability conditions. As an application, I will provide an example of a general $k$-gonal curve from the perspective of Hurwitz-Brill-Noether theory. This is joint work with Gavril Farkas and Andrés Rojas.

Mon, 13 Oct 2025
14:15
L4

Non-maximal Toledo components

Oscar Garcia-Prada
(Instituto de Ciencias Matemáticas (ICMAT))
Abstract

The well-known Milnor-Wood inequality gives a bound on the Toledo invariant of a representation of the fundamental group of a compact surface in a non-compact Lie group of Hermitian type. While a lot is known regarding the counting of maximal Toledo components, and their role in higher Teichmueller theory, the non-maximal case remains elusive. In this talk, I will present a strategy to count the number of such non-maximal Toledo connected components. This is joint work in progress with Brian Collier and Jochen Heinloth, building on previous work with Olivier Biquard, Brian Collier and Domingo Toledo.

Mon, 20 Oct 2025
14:15
L4

Einstein constants and differential topology

Claude LeBrun
(Stony Brook University)
Abstract

A Riemannian metric is said to be  Einstein if it has constant Ricci curvature. In dimensions 2 or 3, this is actually equivalent to requiring the metric to have constant sectional curvature. However,  in dimensions 4 and higher, the Einstein condition becomes significantly weaker than constant sectional curvature, and this has rather dramatic consequences. In particular, it turns out that there are  high-dimensional smooth closed manifolds that admit pairs of Einstein metrics with Ricci curvatures of opposite signs. After explaining how one constructs such examples, I will then discuss some recent results exploring the coexistence of Einstein metrics with zero and positive Ricci curvatures.

Tue, 02 Sep 2025
15:00
L4

On a classification of steady solutions to two-dimensional Euler equations

Changfeng Gui
(University of Macau)
Abstract
In this talk,  I shall  provide a classification of steady solutions to two-dimensional incompressible Euler equations in terms of the set of flow angles. The first main result asserts that the set of flow angles of any bounded steady flow in the whole plane must be the whole circle unless the flow is a parallel shear flow. In an infinitely long horizontal strip or the upper half-plane supplemented with slip boundary conditions, besides the two types of flows appeared in the whole space case, there exists an additional class of steady flows for which the set of flow angles is either the upper or lower closed semicircles. This type of flows is proved to be the class of non-shear flows that have the least total curvature.  A  further classification  of this type of solutions will also be  discussed.    As consequences, we obtain Liouville-type theorems for two-dimensional semilinear elliptic equations with only bounded and measurable nonlinearity, and the structural stability of shear flows whose all stagnation points are not inflection points, including Poiseuille flow as a special case. Our proof relies on the analysis of some quantities related to the curvature of the streamlines.
 
This  talk is  based on  joint works with David Ruiz,  Chunjing Xie and  Huan Xu.
Tue, 02 Sep 2025
14:00
L4

Uniqueness of critical points of the second Neumann eigenfunctions on triangles

Ruofei Yao
(South China University of Technology)
Abstract

The hot spots conjecture, proposed by Rauch in 1974, asserts that the second Neumann eigenfunction of the Laplacian achieves its global maximum (the hottest point) exclusively on the boundary of the domain. Notably, for triangular domains, the absence of interior critical points was recently established by Judge and Mondal in [Ann. Math., 2022]. Nevertheless, several important questions about the second Neumann eigenfunction in triangles remain open. In this talk, we address issues such as: (1) the uniqueness of non-vertex critical points; (2) the necessary and sufficient conditions for the existence of non-vertex critical points; (3) the precise location of the global extrema; (4) the position of the nodal line; among others. Our results not only confirm both the original theorem and Conjecture 13.6 proposed by Judge and Mondal in [Ann. Math., 2020], but also accomplish a key objective outlined in the Polymath 7 research thread 1 led by Terence Tao. Furthermore, we resolve an eigenvalue inequality conjectured by Siudeja [Proc. Amer. Math. Soc., 2016] concerning the ordering of mixed Dirichlet–Neumann Laplacian eigenvalues for triangles. Our approach employs the continuity method via domain deformation. 

 

Fri, 05 Dec 2025

11:00 - 12:00
L4

Cell shapes, migration and mechanics determine pattern formation during development

Dr Lakshmi Balasubramaniam
(Engineering Biology University of Cambridge)
Abstract

Blood vessels are among the most vital structures in the human body, forming intricate networks that connect and support various organ systems. Remarkably, during early embryonic development—before any blood vessels are visible—their precursor cells are arranged in stereotypical patterns throughout the embryo. We hypothesize that these patterns guide the directional growth and fusion of precursor cells into hollow tubes formed from initially solid clusters. Further analysis of cells within these clusters reveals unique organization that may influence their differentiation into endothelial and blood cells. In this work, I revisit the problem of pattern formation through the lens of active matter physics, using both developing embryonic systems and in vitro cell culture models where similar patterns are observed during tissue budding. These different systems exhibit similar patterning behavior, driven by changes in cellular activity, adhesion and motility.

Fri, 28 Nov 2025

11:00 - 12:00
L4

Competition and warfare in bacteria and the human microbiome

Prof Kevin Foster
(Sir William Dunn School of Pathology University of Oxford)
Abstract

Microbial communities contain many evolving and interacting bacteria, which makes them complex systems that are difficult to understand and predict. We use theory – including game theory, agent-based modelling, ecological network theory and metabolic modelling - and combine this with experimental work to understand what it takes for bacteria to succeed in diverse communities. One way is to actively kill and inhibit competitors and we study the strategies that bacteria use in toxin-mediated warfare. We are now also using our approaches to understand the human gut microbiome and its key properties including ecological stability and the ability to resist invasion by pathogens (colonization resistance). Our ultimate goal is to both stabilise microbiome communities and remove problem species without the use of antibiotics.

Subscribe to L4