Cutting along hyperplanes
Abstract
You can cut a cake in half, a pizza into slices, but can you cut an infinite group? I'll tell you about my sensei's secret cutting technique and demonstrate a couple of examples. There might be some spectral goodies at the end too.
Improving acylindrical actions on trees
Abstract
16:00
Matrix-product state skeletons in Onsager-integrable quantum chains
Abstract
Matrix-product state (MPS) skeletons are connected networks of local one-dimensional quantum lattice models with ground states admitting an MPS representation with finite bond dimension. In this talk, I will discuss how such skeletons underlie certain families of models obeying the Onsager algebra, and how these simple ground states provide a route to explicitly computing correlation functions.
16:00
Hard Unknot Diagrams and Arc Presentations
Abstract
13:00
Towards Finite Element Tensor Calculus
Abstract
Classical finite element methods discretize scalar functions using piecewise polynomials. Vector finite elements, such as those developed by Raviart-Thomas, Nédélec, and Brezzi-Douglas-Marini in the 1970s and 1980s, have since undergone significant theoretical advancements and found wide-ranging applications. Subsequently, Bossavit recognized that these finite element spaces are specific instances of Whitney’s discrete differential forms, which inspired the systematic development of Finite Element Exterior Calculus (FEEC). These discrete topological structures and patterns also emerge in fields like Topological Data Analysis.
In this talk, we present an overview of discrete and finite element differential forms motivated by applications from topological hydrodynamics, alongside recent advancements in tensorial finite elements. The Bernstein-Gelfand-Gelfand (BGG) sequences encode the algebraic and differential structures of tensorial problems, such as those encountered in solid mechanics, differential geometry, and general relativity. Discretization of the BGG sequences extends the periodic table of finite elements, originally developed for Whitney forms, to include Christiansen’s finite element interpretation of Regge calculus and various distributional finite elements for fluids and solids as special cases. This approach further illuminates connections between algebraic and geometric structures, generalized continuum models, finite elements, and discrete differential geometry.
11:30
On the weak coupling limit of the Schrödinger equation with periodic potential
13:00
Generalized Persistent Laplacians and Their Spectral Properties
Abstract