Thu, 20 Jun 2019

16:00 - 17:00
L6

Explicit Non-Abelian Chabauty via Motivic Periods

David Corwin
(UC Berkeley)
Abstract

We report on a line of work initiated by Dan-Cohen and Wewers and continued by Dan-Cohen and the speaker to explicitly compute the zero loci arising in Kim's non-abelian Chabauty's method. We explain how this works, an important step of which is to compute bases of a certain motivic Hopf algebra in low degrees. We will summarize recent work by Dan-Cohen and the speaker, extending previous computations to $\mathbb{Z}[1/3]$ and proposing a general algorithm for solving the unit equation. Many of the methods in the more recent work are inspired by recent ideas of Francis Brown. Finally, we indicate future work, in which we hope to use elliptic motivic periods to explicitly compute points on punctured elliptic curves and beyond.

Thu, 13 Jun 2019

16:00 - 17:00
L6

Arakelov theory on degenerating curves

Gerd Faltings
(University of Bonn and MPIM)
Abstract

We compute the asymptotics of Arakelov functions if smooth curves degenerate to semistable singular curves. The motivation was to determine whether the delta function defines a metric on the boundary of moduli space. In fact things are slightly more complicated. The main result states that the asymptotics is mostly governed by the graph associated to the degeneration, with some subleties. The topic has been also treated by R. deJong and my student R. Wilms.

Thu, 06 Jun 2019

16:00 - 17:00
L6

A non-abelian algebraic criterion for good reduction of curves

Valentina DiProietto
(University of Exeter)
Abstract


For a family of proper hyperbolic complex curves $f: X \longrightarrow \Delta^*$ over a puntured disc $\Delta^*$ with semistable reduction at the center, Oda proved, with transcendental methods, that the outer monodromy action of $\pi_1(\Delta^*) \cong \mathbb{Z}$ on the classical unipotent fundamental group of the generic fiber of $f$ is trivial if and only if $f$ has good reduction at the center. In this talk I explain a joint work with B. Chiarellotto and A. Shiho in which we give a purely algebraic proof of Oda's result.

Thu, 23 May 2019

16:00 - 17:00
L6

The Sum-Product Phenomenon

George Shakan
(Oxford University)
Abstract

In 1983, Erdos and Szemerédi conjectured that for any finite subset of the integers, either the sumset or the product set has nearly quadratic growth. Applications include incidence geometry, exponential sums, compressed image sensing, computer science, and elsewhere. We discuss recent progress towards the main conjecture and related questions. 

Mon, 24 Jun 2019
15:45
L6

Derived modular functors

Lukas Jannik Woike
(Hamburg)
Abstract

 For a semisimple modular tensor category the Reshetikhin-Turaev construction yields an extended three-dimensional topological field theory and hence by restriction a modular functor. By work of Lyubachenko-Majid the construction of a modular functor from a modular tensor category remains possible in the non-semisimple case. We explain that the latter construction is the shadow of a derived modular functor featuring homotopy coherent mapping class group actions on chain complex valued conformal blocks and a version of factorization and self-sewing via homotopy coends. On the torus we find a derived version of the Verlinde algebra, an algebra over the little disk operad (or more generally a little bundles algebra in the case of equivariant field theories). The concepts will be illustrated for modules over the Drinfeld double of a finite group in finite characteristic. This is joint work with Christoph Schweigert (Hamburg).

Thu, 16 May 2019

16:00 - 17:00
L6

A quantitative bound in the nonlinear Roth theorem

Sean Prendiville
(Manchester)
Abstract

We discuss a nonlinear variant of Roth’s theorem on the existence of three-term progressions in dense sets of integers, focusing on an effective version of such a result. This is joint work with Sarah Peluse.
 

Thu, 09 May 2019

16:00 - 17:00
L6

Prime number models, large gaps, prime tuples and the square-root sieve.

Kevin Ford
(Illinois at Urbana-Champaign)
Abstract


We introduce a new probabilistic model for primes, which we believe is a better predictor for large gaps than the models of Cramer and Granville. We also make strong connections between our model, prime k-tuple counts, large gaps and the "square-root sieve".  In particular, our model makes a prediction about large prime gaps that may contradict the models of Cramer and Granville, depending on the tightness of a certain sieve estimate. This is joint work with Bill Banks and Terence Tao.

Thu, 30 May 2019

16:00 - 17:00
L6

Fourier expansions at cusps and the Manin constant of elliptic curves

Michalis Neururer
(TU Darmstadt)
Abstract

I will discuss the arithmetic significance of Fourier expansions of modular forms at cusps. I will talk about joint work with F. Brunault, where we determine the number field generated by Fourier coefficients of newforms at a cusp. Then I will discuss joint work with A. Saha and K. Česnavičius where we find denominator bounds for Fourier expansions at cusps and apply these bounds to a conjecture on the Manin constants of elliptic curves.

Mon, 10 Jun 2019
17:00
L6

Curve complexes of Artin groups and Borel-Serre bordifications of hyperplane arrangement complements

Michael Davis
(Ohio State University)
Abstract

This is a report on work in progress with Jingyin Huang. The complement of an arrangement of linear hyperplanes in a complex vector space has a natural “Borel-Serre bordification” as a smooth manifold with corners. Its universal cover is analogous to the Borel-Serre bordification of an arithmetic lattice acting on a symmetric space as well as to the Harvey bordification of Teichmuller space. In the first case the boundary of this bordification is homotopy equivalent to a spherical building; in the second case it is homotopy equivalent to curve complex of the surface. In the case of a reflection arrangement the boundary of its universal cover is the “curve complex” of the corresponding spherical Artin group. By definition this is the simplicial complex of all conjugates of proper, irreducible, spherical parabolic subgroups in the Artin group. A cohomological method is used to show that the curve complex of a spherical Artin group has the homotopy type of a wedge of spheres.

Mon, 17 Jun 2019
15:45
L6

The Teichmüller TQFT volume conjecture for twist knots

Fathi Ben Aribi
(Geneva)
Abstract

(joint work with E. Piguet-Nakazawa)

In 2014, Andersen and Kashaev defined an infinite-dimensional TQFT from quantum Teichmüller theory. This Teichmüller TQFT is an invariant of triangulated 3-manifolds, in particular knot complements.

The associated volume conjecture states that the Teichmüller TQFT of an hyperbolic knot complement contains the volume of the knot as a certain asymptotical coefficient, and Andersen-Kashaev proved this conjecture for the first two hyperbolic knots.

In this talk I will present the construction of the Teichmüller TQFT and how we approached this volume conjecture for the infinite family of twist knots, by constructing new geometric triangulations of the knot complements.

No prerequisites in Quantum Topology are needed.

Subscribe to L6