Mon, 20 May 2019
15:45
L6

Rational cobordisms and integral homology

Paolo Aceto
(Oxford)
Abstract

We prove that every rational homology cobordism class in the subgroup generated
by lens spaces contains a unique connected sum of lens spaces whose first homology embeds in
any other element in the same class. As a consequence we show that several natural maps to
the rational homology cobordism group have infinite rank cokernels, and obtain a divisibility
condition between the determinants of certain 2-bridge knots and other knots in the same
concordance class. This is joint work with Daniele Celoria and JungHwan Park.

Mon, 13 May 2019
15:45
L6

On operads with homological stability

Tom Zeman
(Oxford)
Abstract

In a recent paper, Basterra, Bobkova, Ponto, Tillmann and Yeakel defined
topological operads with homological stability (OHS) and proved that the
group completion of an algebra over an OHS is weakly equivalent to an
infinite loop space.

In this talk, I shall outline a construction which to an algebra A over
an OHS associates a new infinite loop space. Under mild conditions on
the operad, this space is equivalent as an infinite loop space to the
group completion of A. This generalises a result of Wahl on the
equivalence of the two infinite loop space structures constructed by
Tillmann on the classifying space of the stable mapping class group. I
shall also talk about an application of this construction to stable
moduli spaces of high-dimensional manifolds in thesense of Galatius and
Randal-Williams.

Mon, 06 May 2019
15:45
L6

Holomorphic curves and Seiberg-Witten invariants for 4-dimensional cobordisms

Yi-Jen Lee
(The Chinese University of Hong Kong)
Abstract

We will discuss a variant of Taubes’s Seiberg-Witten to Gromov theorem in the context of a 4-manifold with cylindrical ends, equipped with a nontrivial harmonic 2-form. This harmonic 2-form is allowed to be asymptotic to 0 on some (but not all) of its ends, and may have nondegenerate zeros along 1-submanifolds. Corollaries include various positivity results; some simple special cases of these constitute a key ingredient in Kutluhan-Lee-Taubes’s proof of HM = HF (Monopole Floer homology equals Heegaard Floer homology). The aforementioned general theorem is motivated by (potential) extensions of the HM = HF and Lee-Taubes’s HM = PFH (Periodic Floer homology) theorems.

Mon, 29 Apr 2019
15:45
L6

Knots, SL_2(R) representations, and a total Lin invariant

Jacob Rasmussen
(Cambridge)
Abstract

X.S. Lin defined an invariant of knots in S^3 by counting represenations 
of the knot group into SU(2) with fixed meridinal holonomy. Lin's 
invariant was subsequently shown to coincide with the Levine-Tristam 
signature. I'll define an analogous total Lin invariant which counts 
repesentations into both SU(2) and SL_2(R). Unlike the SU(2) version, this 
invariant does not (as far as I know) coincide with other known 
invariants. I'll describe some applications to left-orderability of Dehn 
fillings and branched covers, as well as a curious connection with the 
Alexander polynomial. This is joint work with Nathan Dunfield.

Thu, 02 May 2019

16:00 - 17:00
L6

Arithmetic quantum chaos and small scale equidistribution

Peter Humphries
(UCL)
Abstract

Berry's random wave conjecture is a heuristic that the eigenfunctions of a classically ergodic system ought to display Gaussian random behaviour, as though they were random waves, in the large eigenvalue limit. We discuss two manifestations of this conjecture for eigenfunctions of the Laplacian on the modular surface: Planck scale mass equidistribution, and an asymptotic for the fourth moment. We will highlight how the resolution of these two problems in this number-theoretic setting involves a delicate understanding of the behaviour of certain families of L-functions.

Tue, 18 Jun 2019

14:30 - 15:30
L6

Enumerating graphs and other discrete structures by degree sequence

Anita Liebenau
Further Information

How many d-regular graphs are there on n vertices? What is the probability that G(n,p) has a specific given degree sequence? 

Asymptotic formulae for the first question are known when d=o(\sqrt(n)) and when d= \Omega(n). More generally, asymptotic formulae are known for 
the number of graphs with a given degree sequence, for a range of degree sequences that is wide enough to deduce asymptotic formulae for the second 
question for p =o(1/o(\sqrt(n))) and p = Theta(1).  

McKay and Wormald showed that the formulae for the sparse case and the 
dense case can be cast into a common form, and then conjectured in 1990 and 1997 that the same formulae should hold for the gap range. A particular consequence of both conjectures is that the degree sequence of the random graph G(n,p) can be approximated by a sequence of n independent 
binomial variables Bin(n − 1, p'). 

In 2017, Nick Wormald and I proved both conjectures. In this talk I will describe the problem and survey some of the earlier methods to showcase the differences to our new methods. I shall also report on enumeration results of other discrete structures, such as bipartite graphs and hypergraphs, that are obtained by adjusting our methods to those settings. 

Tue, 04 Jun 2019

14:30 - 15:30
L6

Non-concentration of the chromatic number of G(n, 1/2)

Annika Heckel
Further Information

A classic result of Shamir and Spencer states that for any function $p=p(n)$, the chromatic number of $G(n,p)$ is whp concentrated on a sequence of intervals of length about $\sqrt{n}$. For $p<n^{-\frac{1}{2} -\epsilon}$, much more is known: here, the chromatic number is concentrated on two consecutive values.

Until now, there have been no non-trivial cases where $\chi(G(n,p))$ is known not to be extremely narrowly concentrated. In 2004, Bollob\'as asked for any such examples, particularly in the case $p=\frac{1}{2}$, in a paper in the problem section of CPC. 

In this talk, we show that the chromatic number of $G(n, 1/2)$ is not whp concentrated on $n^{\frac{1}{4}-\epsilon}$ values

Tue, 07 May 2019

14:30 - 15:30
L6

Around Brooks' theorem

Marthe Bonamy
Further Information

In this talk, we will discuss various results around Brooks' theorem: a graph has chromatic number at most its maximum degree, unless it is a clique or an odd cycle. We will consider stronger variants and local versions, as well as the structure of the solution space of all corresponding colorings.

Tue, 30 Apr 2019

14:30 - 15:30
L6

Erdős-Rothschild problem for five and six colours

Jozef Skokan
Further Information

Given positive integers n,r,k, the Erdős-Rothschild problem asks to determine the largest number of r-edge-colourings without monochromatic k-cliques a graph on n vertices can have. In the case of triangles, i.e. when k=3, the solution is known for r = 2,3,4. We investigate the problem for five and six colours.

Tue, 14 May 2019

14:30 - 15:30
L6

Graphs which are expanders both locally and globally

Michael Chapman
Further Information

Expander graphs play a key role in modern mathematics and computer science. Random d-regular graphs are good expanders. Recent developments in PCP theory require families of graphs that are expanders both globally and locally. The meaning of “globally" is the usual one of expansion in graphs, and locally means that for every vertex the subgraph induced by its neighbors is also an expander graph. These requirements are significantly harder to satisfy and no good random model for such (bounded degree) graphs is presently known. In this talk we discuss two new combinatorial constructions of such graphs. We also say something about the limitations of such constructions and provide an Alon-Bopanna type bound for the (global) spectral gap of such a graph. In addition we discuss other notions of high dimensional expansion that our constructions do and do not satisfy, such as coboundary expansion, geometric overlap and mixing of the edge-triangle-edge random walk. This is a joint work with Nati Linial and Yuval Peled.
 

Subscribe to L6