Mon, 10 Jun 2019
15:45
L6

Unitary group integrals, surfaces, and mapping class groups

Michael Magee
(Durham University)
Abstract


For any word w in a free group of rank r>0, and any compact group G, w induces a `word map' from G^r to G by substitutions of elements of G for the letters of w. We may also choose the r elements of G independently with respect to Haar measure on G, and then apply the word map. This gives a random element of G whose distribution depends on w. An interesting observation is that this distribution doesn't change if we change w by an automorphism of the free group. It is a wide open question whether the measures induced by w on compact groups determine w up to automorphisms.
My talk will be mostly about the case G = U(n), the n by n complex unitary matrices. The technical tool we use is a precise formula for the moments of the distribution induced by w on U(n). In the formula, there is a surprising appearance of concepts from infinite group theory, more specifically, Euler characteristics of mapping class groups of surfaces. I'll explain how our formula allows us to make progress on the question described above.
This is joint work with Doron Puder (Tel Aviv).
 

Mon, 03 Jun 2019
15:45
L6

The Tits alternative for two-dimensional Artin groups

Alexandre Martin
(Heriot Watt University)
Abstract

A group is said to satisfy the Tits Alternative if its finitely generated subgroups exhibit a striking dichotomy: they are either "big" (they contain a non-abelian free subgroup) or "small" (they are virtually soluble). Many groups of geometric interest have been shown to satisfy the Tits Alternative: linear groups, mapping class groups of hyperbolic surfaces, etc. In this talk, I will explain how one can use ideas from group actions in negative curvature to prove such a dichotomy. In particular, I will show how one can prove a strengthening of the Tits Alternative for a large class of Artin groups. This is joint work with Piotr Przytycki.

Mon, 27 May 2019
15:45
L6

Secondary invariants and mock modularity

Theo Johnson-Freyd
(Perimeter Institute for Theoretical Physics)
Abstract

A two-dimensional, minimally Supersymmetric Quantum Field Theory is "nullhomotopic" if it can be deformed to one with spontaneous supersymmetry breaking, including along deformations that are allowed to "flow up" along RG flow lines. SQFTs modulo nullhomotopic SQFTs form a graded abelian group $SQFT_\bullet$. There are many SQFTs with nonzero index; these are definitely not nullhomotopic, and indeed represent nontorision classes in $SQFT_\bullet$. But relations to topological modular forms suggests that $SQFT_\bullet$ also has rich torsion. Based on an analysis of mock modularity and holomorphic anomalies, I will describe explicitly a "secondary invariant" of SQFTs and use it to show that a certain element of $SQFT_3$ has exact order $24$. This work is joint with D. Gaiotto and E. Witten.

Thu, 07 Mar 2019

16:00 - 17:00
L6

Algebraic independence for values of integral curves

Tiago Fonseca
(University of Oxford)
Abstract

After a brief introduction to the theory of transcendental numbers, I will discuss Nesterenko's 1996 celebrated theorem on the algebraic independence of values of Eisenstein series, and some related open problems. This motivates the second part of the talk, in which I will report on a recent geometric generalization of Nesterenko's method.

Fri, 21 Jun 2019

14:00 - 15:30
L6

Dynamically consistent parameterization of mesoscale eddies

Dr. Pavel Berloff
(Imperial College London)
Abstract

This work aims at developing new approach for parameterizing mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. These effects are often modelled as some diffusion process or a stochastic forcing, and the proposed approach is implicitly related to the latter category. The idea is to approximate transient eddy flux divergence in a simple way, to find its actual dynamical footprints by solving a simplified but dynamically relevant problem, and to relate the ensemble of footprints to the large-scale flow properties.

Fri, 07 Jun 2019

14:00 - 15:30
L6

The strange instability of the equatorial Kelvin wave

Dr. Stephen Griffiths
(University of Leeds)
Abstract

The Kelvin wave is perhaps the most important of the equatorially trapped waves in the terrestrial atmosphere and ocean, and plays a role in various phenomena such as tropical convection and El Nino. Theoretically, it can be understood from the linear dynamics of a stratified fluid on an equatorial beta plane, which, with simple assumptions about the disturbance structure, leads to wavelike solutions propagating along the equator, with exponential decay in latitude. However, when the simplest possible background flow is added (with uniform latitudinal shear), the Kelvin wave (but not the other equatorial waves) becomes unstable. This happens in an extremely unusual way: there is instability for arbitrarily small nondimensional shear p, and the growth rate is proportional to exp(-1/p^2) as p->0. This in contrast to most hydrodynamic instabilities, in which the growth rate typically scales as a positive power of p-p_c as the control parameter p passes through a critical value p_c.

This Kelvin wave instability has been established numerically by Natarov and Boyd, who also speculated as to the underlying mathematical cause. Here we show how the growth rate and full spatial structure of the instability may be derived using matched asymptotic expansions applied to the (linear) equations of motion. This involves an adventure with Whittaker functions in the exponentially-decaying tails of the Kelvin waves, and a trick to reveal the exponentially small growth rate from a formulation that only uses regular perturbation expansions. Numerical verification of the analysis is also interesting and challenging, since special high-precision solutions of the governing ODE are required even when the nondimensional shear is not that small (circa 0.5).

Thu, 28 Feb 2019

16:00 - 17:00
L6

Arithmetic statistics via graded Lie algebras

Beth Romano
(University of Cambridge)
Abstract

I will talk about recent work with Jack Thorne in which we find the average size of the Selmer group for a family of genus-2 curves by analyzing a graded Lie algebra of type E_8. I will focus on the role representation theory plays in our proofs.

Fri, 24 May 2019

14:00 - 15:30
L6

Diabatic vortices: a simple model of tropical cyclones and the martian polar vortex

Prof. Richard Scott
(University of St Andrews)
Abstract

In this talk, we will consider how two very different atmospheric phenomena, the terrestrial tropical cyclone and the martian polar vortex, can be described within a single simplified dynamical framework based on the forced shallow water equations. Dynamical forcings include angular momentum transport by secondary (transverse) circulations and local heating due to latent heat release. The forcings act in very different ways in the two systems but in both cases lead to distinct annular distributions of potential vorticity, with a local vorticity maximum at a finite radius surrounding a central minimum.  In both systems, the resulting vorticity distributions are subject to shear instability and the degree of eddy growth versus annular persistence can be examined explicitly under different forcing scenarios.

Fri, 10 May 2019

14:00 - 15:30
L6

Scattering of inertia-gravity waves in geostrophic turbulence

Prof. Jacques Vanneste
(University of Edinburgh)
Abstract

Inertia-gravity waves (IGWs) are ubiquitous in the ocean and the atmosphere. Once generated (by tides, topography, convection and other processes), they propagate and scatter in the large-scale, geostrophically-balanced background flow. I will discuss models of this scattering which represent the background flow as a random field with known statistics. Without assumption of spatial scale separation between waves and flow, the scattering is described by a kinetic equation involving a scattering cross section determined by the energy spectrum of the flow. In the limit of small-scale waves, this equation reduces to a diffusion equation in wavenumber space. This predicts, in particular, IGW energy spectra scaling as k^{-2}, consistent with observations in the atmosphere and ocean, lending some support to recent claims that (sub)mesoscale spectra can be attributed to almost linear IGWs.  The theoretical predictions are checked against numerical simulations of the three-dimensional Boussinesq equations.
(Joint work with Miles Savva and Hossein Kafiabad.)

Tue, 26 Feb 2019

14:30 - 15:30
L6

Graphons with minimum clique density

Maryam Sharifzadeh
Further Information

Among all graphs of given order and size, we determine the asymptotic structure of graphs which minimise the number of $r$-cliques, for each fixed $r$. In fact, this is achieved by characterising all graphons with given density which minimise the $K_r$-density. The case $r=3$ was proved in 2016 by Pikhurko and Razborov.

 

This is joint work with H. Liu, J. Kim, and O. Pikhurko.

Subscribe to L6