Thu, 26 Apr 2018

16:00 - 17:00
L6

Fractional parts of polynomials

James Maynard
(University of Oxford)
Abstract

Let $f_1,\dots,f_k$ be real polynomials with no constant term and degree at most $d$. We will talk about work in progress showing that there are integers $n$ such that the fractional part of each of the $f_i(n)$ is very small, with the quantitative bound being essentially optimal in the $k$-aspect. This is based on the interplay between Fourier analysis, Diophantine approximation and the geometry of numbers. In particular, the key idea is to find strong additive structure in Fourier coefficients.

Tue, 05 Jun 2018
14:30
L6

Fractional decompositions of dense graphs

Richard Montgomery
(Cambridge)
Abstract

It is difficult to determine when a graph G can be edge-covered by edge-disjoint copies of a fixed graph F. That is, when it has an F-decomposition. However, if G is large and has a high minimum degree then it has an F-decomposition, as long as some simple divisibility conditions hold. Recent research allows us to prove bounds on the necessary minimum degree by studying a relaxation of this problem, where a fractional decomposition is sought.

I will show how a relatively simple random process can give a good approximation to a fractional decomposition of a dense graph, and how it can then be made exact. This improves the best known bounds for this problem.
 

Tue, 15 May 2018
14:30
L6

The Erdos Matching Conjecture and related questions

Andrey Kupavskii
(Birmingham University)
Abstract

Consider a family of k-element subsets of an n-element set, and assume that the family does not contain s pairwise disjoint sets. The well-known Erdos Matching Conjecture suggests the maximum size of such a family. Finding the maximum is trivial for n<(s+1)k and is relatively easy for n large in comparison to s,k. There was a splash of activity around the conjecture in the recent years, and, as far as the original question is concerned, the best result is due to Peter Frankl, who verified the conjecture for all n>2sk. In this work, we improve the bound of Frankl for any k and large enough s. We also discuss the connection of the problem to an old question on deviations of sums of random variables going back to the work of Hoeffding and Shrikhande.
 

Tue, 08 May 2018
14:30
L6

The Junta Method for Hypergraphs

Noam Lifshitz
(Bar Ilan University)
Abstract

Numerous problems in extremal hypergraph theory ask to determine the maximal size of a k-uniform hypergraph on n vertices that does not contain an 'enlarged' copy H^+ of a fixed hypergraph H. These include well-known  problems such as the Erdős-Sós 'forbidding one intersection' problem and the Frankl-Füredi 'special simplex' problem.


In this talk we present a general approach to such problems, using a 'junta approximation method' that originates from analysis of Boolean functions. We prove that any (H^+)-free hypergraph is essentially contained in a 'junta' -- a hypergraph determined by a small number of vertices -- that is also (H^+)-free, which effectively reduces the extremal problem to an easier problem on juntas. Using this approach, we obtain, for all C<k<n/C, a complete solution of the extremal problem for a large class of H's, which includes  the aforementioned problems, and solves them for a large new set of parameters.


Based on joint works with David Ellis and Nathan Keller
 

Tue, 01 May 2018
14:30
L6

Better Bounds for Poset Dimension and Boxicity

David Wood
(Monash University)
Abstract

We prove that the dimension of every poset whose comparability graph has maximum degree $\Delta$ is at most $\Delta\log^{1+o(1)} \Delta$. This result improves on a 30-year old bound of F\"uredi and Kahn, and is within a $\log^{o(1)}\Delta$ factor of optimal. We prove this result via the notion of boxicity. The boxicity of a graph $G$ is the minimum integer $d$ such that $G$ is the intersection graph of $d$-dimensional axis-aligned boxes. We prove that every graph with maximum degree $\Delta$ has boxicity at most $\Delta\log^{1+o(1)} \Delta$, which is also within a $\log^{o(1)}\Delta$ factor of optimal. We also show that the maximum boxicity of graphs with Euler genus $g$ is $\Theta(\sqrt{g \log g})$, which solves an open problem of Esperet and Joret and is tight up to a $O(1)$ factor. This is joint work with Alex Scott (arXiv:1804.03271).

Mon, 07 May 2018
15:45
L6

Detecting decompositions of hyperbolic groups

Benjamin J. Barrett
(Cambridge)
Abstract

When studying a group, it is natural and often useful to try to cut it up 
onto simpler pieces. Sometimes this can be done in an entirely canonical 
way analogous to the JSJ decomposition of a 3-manifold, in which the 
collection of tori along which the manifold is cut is unique up to isotopy. 
It is a theorem of Brian Bowditch that if the group acts nicely on a metric 
space with a negative curvature property then a canonical decomposition can 
be read directly from the large-scale geometry of that space. In this talk 
we shall explore an algorithmic consequence of this relationship between 
the large-scale geometry of the group and is algebraic decomposition.

Mon, 04 Jun 2018
17:00
L6

Growth of groups, isoperimetry and random walks

Anna Erschler
(ENS Paris)
Abstract

Answering a question of Milnor, Grigorchuk constructed in the early eighties the
first examples of groups of intermediate growth, that is, finitely generated
groups with growth strictly between polynomial and exponential.
In  joint work with Laurent Bartholdi, we show that under a mild regularity assumption, any function greater than exp(n^a), where `a' is a solution of the equation
  2^(3-3/x)+ 2^(2-2/x)+2^(1-1/x)=2,
is a growth function of some group. These are the first examples of groups
of intermediate growth where the asymptotic of  the growth function is known.
Among applications of our results is the fact that any group of locally subexponential growth
can be embedded as a subgroup of some group of intermediate growth (some of these latter groups cannot be  subgroups in Grigorchuk groups).

In a recent work with Tianyi Zheng, we  provide  near optimal lower bounds
for Grigorchuk torsion groups, including the first Grigorchuk group. Our argument is by a construction of random walks with non-trivial Poisson boundary, defined by 
a measure with power law decay.

Mon, 04 Jun 2018
15:45
L6

Heegaard Floer, taut foliations, and regions of rational surgery slopes

Sarah Rasmussen
(Cambridge)
Abstract

Recent tools make it possible to partition the space of rational Dehn 
surgery slopes for a knot (or in some cases a link) in a 3-manifold into 
domains over which the Heegaard Floer homology of the surgered manifolds 
behaves continuously as a function of slope. I will describe some 
techniques for determining the walls of discontinuity separating these 
domains, along with efforts to interpret some aspects of this structure 
in terms of the behaviour of co-oriented taut foliations. This talk 
draws on a combination of independent work, previous joint work with 
Jake Rasmussen, and work in progress with Rachel Roberts.

Mon, 30 Apr 2018
15:45
L6

A dynamical regard on knot Floer homology

Paolo Ghiggini
(Nantes)
Abstract

I will prove that the knot Floer homology group
HFK-hat(K, g-1) for a genus g fibered knot K is isomorphic to a
variant of the fixed points Floer homology of an area-preserving
representative of its monodromy. This is a joint work with Gilberto
Spano.
 

Subscribe to L6