Mon, 30 Nov 2015
15:45
L6

Bounded cohomology and lattices in product of trees

Alessandra Iozzi
(ETH Zuerich)
Abstract

We will discuss the concept of $\ell^2$-stability of a group and show some of its rigidity consequences.  We provide moreover some very concrete examples of lattices in product of trees that have many interesting properties, $\ell^2$-stability being only one of them.

Mon, 09 Nov 2015
15:45
L6

Koszul duality patterns in Floer theory

Yanki Lekili
(King's College London)
Abstract

We study symplectic invariants of the open symplectic manifolds X
obtained by plumbing cotangent bundles of spheres according to a
plumbing tree. We prove that certain models for the Fukaya category F(X)
of closed exact Lagrangians in X and the wrapped Fukaya category W(X)
are related by Koszul duality. As an application, we give explicit
computations of symplectic cohomology essentially for all trees. This is
joint work with Tolga Etg\"u.

Mon, 02 Nov 2015
15:45
L6

Graphical calculus for 3-dimensional TQFTs

Bruce Bartlett
(Oxford)
Abstract

Recent developments in 3-dimensional topological quantum field theory allow us to understand the vector spaces assigned to surfaces as spaces of string diagrams. In the Reshetikhin-Turaev model, these string diagrams live inside a handlebody bounding the surface, while in the Turaev-Viro model, they live on the surface itself. There is a "lifting map" from the former to the latter, which sheds new light on a number of constructions. Joint with Gerrit Goosen.

Mon, 26 Oct 2015
15:45
L6

A cubical flat torus theorem

Dani Wise
(McGill University and IHP Paris)
Abstract

I will describe a “cubical flat torus theorem” for a group G acting properly and cocompactly on a CAT(0) cube complex.
This states that every “highest” free abelian subgroup of G acts properly and cocompactly on a convex subcomplex that is quasi-isometric to a Euclidean space.
I will describe some simple consequences, as well as the original motivation which was to prove the “bounded packing property” for cyclic subgroups of G.
This is joint work with Daniel Woodhouse.

Mon, 19 Oct 2015
15:45
L6

On the combinatorics of the two-dimensional Ising model

David Cimasoni
(University of Geneva)
Abstract

In the first part of this talk, we will give a very gentle introduction to the Ising model. Then , we will explain a very simple proof of a combinatorial formula for the 2D Ising model partition function using the language of Kac-Ward matrices. This approach can be used for general weighted graphs embedded in surfaces, and extends to the study of several other observables. This is a joint work with Dima Chelkak and Adrien Kassel.
 

Mon, 05 Oct 2015
15:45
L6

Quasicircles

Yves Benoist
(Université Paris XI, ORSAY)
Abstract

If you do not know quasicircles, you will understand what they are.
If you hate quasicircles, you will change your mind.
If you already love quasicircles, they will astonish you once more.

Mon, 16 Nov 2015
15:45
L6

Characterizing a vertex-transitive graph by a large ball

Romain Tessera
(Université Paris XI, ORSAY)
Abstract

It is well-known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. We will prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free virtually nilpotent groups. By contrast, we will exhibit various examples of Cayley graphs of finitely presented groups (e.g. PGL(5, Z)) which fail to have this property, answering a question of Benjamini, Ellis, and Georgakopoulos. This is a joint work with Mikael de la Salle.

Thu, 19 Nov 2015

12:00 - 13:00
L6

Why gradient flows of some energies good for defect equilibria are not good for dynamics, and an improvement

Amit Acharya
(Carnegie Mellon Univeristy)
Abstract
Straight screw dislocations are line defects in crystalline materials and wedge disclinations are line defects in nematic liquid crystals. In this talk, I will discuss the development and implications of a single pde model intended to describe equilibrium states and dynamics of these defects. These topological defects are classically treated as singularities that result in infinite total energy in bodies of finite extent that behave linearly in their elastic response. I will explain how such singularities can be alleviated by the introduction of an additional 'eigendeformation' field, beyond the fundamental fields of the classical theories involved. The eigendeformation field bears much similarity to gauge fields in high- energy physics, but arises from an entirely different standpoint not involving the notion of gauge invariance in our considerations. It will then be shown that an (L2) gradient flow of a 'canonical', phase- field type (up to details) energy function coupling the deformation to the eigendeformation field that succeeds in predicting the defect equilibrium states of interest necessarily has to fail in predicting particular types of physically important defect dynamics. Instead, a dynamical model based on the same
energy but involving a conservation statement for topological charge of the line defect field for its evolution will be shown to succeed. This is joint work with Chiqun Zhang, graduate student at CMU.
Mon, 16 Nov 2015
14:15
L6

Painlev'e equations, cluster algebras and quantisation

Marta Mazzocco
(Loughborough)
Abstract

The famous Greek astronomer Ptolemy created his well-known table of chords in order to aid his astronomical observations. This table was based on the renowned relation between the four sides and the two diagonals of a quadrilateral whose vertices lie on a common circle.

In 2002, the mathematicians Fomin and Zelevinsky generalised this relation to introduce a new structure called cluster algebra. This is a set of clusters, each cluster made of n numbers called cluster variables. All clusters are obtained from some initial cluster by a sequence of transformations called mutations. Cluster algebras appear in a variety of topics, including total positivity, number theory, Teichm\”uller theory and computer graphics. A quantisation procedure for cluster algebras was proposed by Berenstein and Zelevinsky in 2005.

After introducing the basics about cluster algebras, in this talk we will link cluster algebras to the theory of Painlevé equations. This link will provide the foundations to introduce a new class of cluster algebras of geometric type. We will show that the quantisation of these new cluster algebras provide a geometric setting for the Berenstein–Zelevinsky construction.  

Subscribe to L6