Tue, 05 Jan 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

TBA

Dr Salvatore Filippone
(Cranfield University)
Thu, 04 Feb 2016

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Task-based multifrontal QR solver for heterogeneous architectures

Dr Florent Lopez
(Rutherford Appleton Laboratory)
Abstract

To face the advent of multicore processors and the ever increasing complexity of hardware architectures, programming
models based on DAG parallelism regained popularity in the high performance, scientific computing community. Modern runtime systems offer a programming interface that complies with this paradigm and powerful engines for scheduling the tasks into which the application is decomposed. These tools have already proved their effectiveness on a number of dense linear algebra applications. 

In this talk we present the design of task-based sparse direct solvers on top of runtime systems. In the context of the
qr_mumps solver, we prove the usability and effectiveness of our approach with the implementation of a sparse matrix multifrontal factorization based on a Sequential Task flow parallel programming model. Using this programming model, we developed features such as the integration of dense 2D Communication Avoiding algorithms in the multifrontal method allowing for better scalability compared to the original approach used in qr_mumps.

Following this approach, we move to heterogeneous architectures where task granularity and scheduling strategies are critical to achieve performance. We present, for the multifrontal method, a hierarchical strategy for data partitioning and a scheduling algorithm capable of handling the heterogeneity of resources.   Finally we introduce a memory-aware algorithm to control the memory behavior of our solver and show, in the context of multicore architectures, an important reduction of the memory footprint for the multifrontal QR factorization with a small impact on performance.

Thu, 26 Nov 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

The Worst Case Complexity of Direct Search and Beyond

Dr Zaikun Zhang
(IRIT-ENSEEIHT Toulouse)
Abstract

This talk focuses on the direct search method, arguably one of the simplest optimization algorithms. The algorithm minimizes an objective function by iteratively evaluating it along a number of (polling) directions, which are typically taken from so-called positive spanning sets. It does not use derivatives.

We first introduce the worst case complexity theory of direct search, and discuss how to choose the positive spanning set to minimize the complexity bound. The discussion leads us to a long-standing open
problem in Discrete Geometry. A recent result on this problem enables us to establish the optimal order for the worst case complexity of direct search.

We then show how to achieve even lower complexity bound by using random polling directions. It turns out that polling along two random directions at each iteration is sufficient to guarantee the convergence
of direct search for any dimension, and the resultant algorithm enjoys lower complexity both in theory and in practice.

The last part of the talk is devoted to direct search based on inaccurate function values. We address three questions:
i) what kind of solution 
can we obtain by direct search if the function values are inaccurate? 
ii) what is the worst case complexity to attain such a solution? iii) given
the inaccuracy in the function values, when to stop the algorithm in order
to guarantee the quality of the solution and also avoid “over-optimization”?

This talk is based on joint works with F. Delbos, M. Dodangeh, S. Gratton, B. Pauwels, C. W. Royer, and L. N. Vicente.

Thu, 22 Oct 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Constraint preconditioning for the coupled Stokes-Darcy system

Dr. Scott Ladenheim
(Manchester University)
Abstract

We propose the use of a constraint preconditioner for the iterative solution of the linear system arising from the finite element discretization of the coupled Stokes-Darcy system. The Stokes-Darcy system is a set of coupled PDEs that can be used to model a freely flowing fluid over porous media flow. The fully coupled system matrix is large, sparse, non-symmetric, and of saddle point form. We provide for exact versions of the constraint preconditioner spectral and field-of-values bounds that are independent of the underlying mesh width. We present several numerical experiments, using the deal.II finite element library, that illustrate our results in both two and three dimensions. We compare exact and inexact versions of the constraint preconditioner against standard block diagonal and block lower triangular preconditioners to illustrate its favorable properties.

Thu, 11 Jun 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Interior Point Methods for Optimal Power Flow Formulations

Andreas Grothey
(University of Edinburgh)
Abstract

Security Constrained Optimal Power Flow is an increasingly important problem for power systems operation both in its own right and as a subproblem for more complex problems such as transmission switching or
unit commitment.

The structure of the problem resembles stochastic programming problems in that one aims to find a cost optimal operation schedule that is feasible for all possible equipment outage scenarios
(contingencies). Due to the presence of power flow constraints (in their "DC" or "AC" version), the resulting problem is a large scale linear or nonlinear programming problem.

However it is known that only a small subset of the contingencies is active at the solution. We show how Interior Point methods can exploit this structure both by simplifying the linear algebra operations as
well as generating necessary contingencies on the fly and integrating them into the algorithm using IPM warmstarting techniques. The final problem solved by this scheme is significantly smaller than the full
contingency constrained problem, resulting in substantial speed gains.

Numerical and theoretical results of our algorithm will be presented.

Thu, 07 May 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

A preconditioned MINRES method for nonsymmetric Toeplitz matrices

Dr. Jennifer Pestana
(University of Manchester)
Abstract

Although Toeplitz matrices are often dense, matrix-vector products with Toeplitz matrices can be quickly performed via circulant embedding and the fast Fourier transform. This makes their solution by preconditioned Krylov subspace methods attractive. 

For a wide class of symmetric Toeplitz matrices, symmetric positive definite circulant preconditioners that cluster eigenvalues have been proposed. MINRES or the conjugate gradient method can be applied to these problems and descriptive convergence theory based on eigenvalues guarantees fast convergence. 

In contrast, although circulant preconditioners have been proposed for nonsymmetric Toeplitz systems, guarantees of fast convergence are generally only available for CG for the normal equations (CGNE). This is somewhat unsatisfactory because CGNE has certain drawbacks, including slow convergence and a larger condition number. In this talk we discuss a simple alternative symmetrization of nonsymmetric Toeplitz matrices, that allows us to use MINRES to solve the resulting linear system. We show how existing circulant preconditioners for nonsymmetric Toeplitz matrices can be straightforwardly adapted to this situation and give convergence estimates similar to those in the symmetric case.

Thu, 05 Mar 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Preconditioned Iterative Solvers for Constrained Optimization

John Pearson
(Edinburgh University)
Abstract

In this talk, we discuss the development of fast iterative solvers for matrix systems arising from various constrained optimization problems. In particular, we seek to exploit the saddle point structure of these problems to construct powerful preconditioners for the resulting systems, using appropriate approximations of the (1,1)-block and Schur complement.

The problems we consider arise from two well-studied subject areas within computational optimization. Specifically, we investigate the
numerical solution of PDE-constrained optimization problems, and the interior point method (IPM) solution of linear/quadratic programming
problems. Indeed a particular focus in this talk is the interior point method solution of PDE-constrained optimization problems with
additional inequality constraints on the state and control variables.

We present a range of optimization problems which we seek to solve using our methodology, and examine the theoretical and practical
convergence properties of our iterative methods for these problems.
 

Thu, 05 Feb 2015

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Rational Krylov Approximation of Matrix Functions and Applications

Dr Stefan Guettel
(Manchester University)
Abstract

Some problems in scientific computing, like the forward simulation of electromagnetic waves in geophysical prospecting, can be
solved via approximation of f(A)b, the action of a large matrix function f(A) onto a vector b. Iterative methods based on rational Krylov
spaces are powerful tools for these computations, and the choice of parameters in these methods is an active area of research.
We provide an overview of different approaches for obtaining optimal parameters, with an emphasis on the exponential and resolvent function, and the square root. We will discuss applications of the rational Arnoldi method for iteratively generating near-optimal absorbing boundary layers for indefinite Helmholtz problems, and for rational least squares vector fitting.

Thu, 27 Nov 2014

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Incomplete Cholesky preconditioners based on orthogonal dropping : theory and practice

Artem Napov
(Universite Libre de Bruxelles)
Abstract

Incomplete Cholesky factorizations are commonly used as black-box preconditioners for the iterative solution of large sparse symmetric positive definite linear systems. Traditionally, incomplete 
factorizations are obtained by dropping (i.e., replacing by zero) some entries of the factors during the factorization process. Here we consider a less common way to approximate the factors : through low-rank approximations of some off-diagonal blocks. We focus more specifically on approximation schemes that satisfy the orthogonality condition: the approximation should be orthogonal to the corresponding approximation error.

The resulting incomplete Cholesky factorizations have attractive theoretical properties. First, the underlying factorization process can be shown breakdown-free. Further, the condition number of the 
preconditioned system, that characterizes the convergence rate of standard iterative schemes, can be shown bounded as a function of the accuracy of individual approximations. Hence, such a bound can benefit from better approximations, but also from some algorithmic peculiarities. Eventually, the above results can be shown to hold for any symmetric positive definite system matrix.

On the practical side, we consider a particular variant of the preconditioner. It relies on a nested dissection ordering of unknowns to  insure an attractive memory usage and operations count. Further, it exploits in an algebraic way the low-rank structure present in system matrices that arise from PDE discretizations. A preliminary implementation of the method is compared with similar Cholesky and 
incomplete Cholesky factorizations based on dropping of individual entries.

Thu, 06 Nov 2014

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Tomographic problems as linear algebra

Bill Lionheart
(Manchester University)
Abstract

For many tomographic imaging problems there are explicit inversion formulas, and depending on the completeness of the data these are unstable to differing degrees. Increasingly we are solving tomographic problems as though they were any other linear inverse problem using numerical linear algebra. I will illustrate the use of numerical singular value decomposition to explore the (in)stability for various problems. I will also show how standard techniques from numerical linear algebra, such as conjugate gradient least squares, can be employed with systematic regularization compared with the ad hoc use of slowly convergent iterative methods more traditionally used in computed tomography. I will mainly illustrate the talk with examples from three dimensional x-ray tomography but I will also touch on tensor tomography problems.
 

Subscribe to Rutherford Appleton Laboratory, nr Didcot