Past Mathematical and Computational Finance Seminar

18 October 2018
16:00
to
17:30
Kim Weston
Abstract

In this talk, I will present an incomplete equilibrium model to determine the price of an annuity.  A finite number of agents receive stochastic income streams and choose between consumption and investment in the traded annuity.  The novelty of this model is its ability to handle running consumption and general income streams.  In particular, the model incorporates mean reverting income, which is empirically relevant but historically too intractable in equilibrium.  The model is set in a Brownian framework, and equilibrium is characterized and proven to exist using a system of fully coupled quadratic BSDEs.  This work is joint with Gordan Zitkovic.

  • Mathematical and Computational Finance Seminar
11 October 2018
16:00
to
17:30
Rafal Lochowski
Abstract

In my talk I will briefly introduce model-free approach to mathematical finance, which uses Vovk's outer measure. Then, using pathwise BDG inequality obtained by Beigbloeck and Siorpaes and modification of Vovk's measure, I will present and prove a model-free version of this inequality for continuous price paths. Finally, I will discuss possible applications, like the existence and uniqueness of solutions of SDEs driven by continuous, model-free price paths. The talk will be based on the joint work with Farai Mhlanga and Lesiba Galane (University of Limpopo, South Africa)

  • Mathematical and Computational Finance Seminar
14 June 2018
16:00
to
17:30
Josef Teichmann
Abstract

We present several instances of applications of machine
learning technologies in mathematical Finance including pricing,
hedging, calibration and filtering problems. We try to show that
regularity theory of the involved equations plays a crucial role
in designing such algorithms.

(based on joint works with Hans Buehler, Christa Cuchiero, Lukas
Gonon, Wahid Khosrawi-Sardroudi, Ben Wood)

  • Mathematical and Computational Finance Seminar
7 June 2018
16:00
to
17:30
Goncalo dos Reis
Abstract


We discuss two Freidlin-Wentzell large deviation principles for McKean-Vlasov equations (MV-SDEs) in certain path space topologies. The equations have a drift of polynomial growth and an existence/uniqueness result is provided. We apply the Monte-Carlo methods for evaluating expectations of functionals of solutions to MV-SDE with drifts of super-linear growth.  We assume that the MV-SDE is approximated in the standard manner by means of an interacting particle system and propose two importance sampling (IS) techniques to reduce the variance of the resulting Monte Carlo estimator. In the "complete measure change" approach, the IS measure change is applied simultaneously in the coefficients and in the expectation to be evaluated. In the "decoupling" approach we first estimate the law of the solution in a first set of simulations without measure change and then perform a second set of simulations under the importance sampling measure using the approximate solution law computed in the first step. 

  • Mathematical and Computational Finance Seminar
24 May 2018
16:00
to
17:30
Michael Kupper
Abstract

We present a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, and bounds on the distribution of a sum of dependent random variables. As an application we focus on the problem of risk aggregation under model uncertainty. The talk is based on joint work with Stephan Eckstein and Mathias Pohl.

  • Mathematical and Computational Finance Seminar
17 May 2018
16:00
to
17:30
Abstract

High-frequency realized variance approaches offer great promise for 
estimating asset prices’ covariation, but encounter difficulties 
connected to the Epps effect. This paper models the Epps effect in a 
stochastic volatility setting. It adds dependent noise to a factor 
representation of prices. The noise both offsets covariation and 
describes plausible lags in information transmission. Non-synchronous 
trading, another recognized source of the effect, is not required. A 
resulting estimator of correlations and betas performs well on LSE 
mid-quote data, lending empirical credence to the approach.

  • Mathematical and Computational Finance Seminar
10 May 2018
16:00
to
17:30
Abstract

Abstract:
Highlights:

•We increasingly live in a digital world and commercial companies are not the only beneficiaries. The public sector can also use data to tackle pressing issues.
•Machine learning is starting to make an impact on the tools regulators use, for spotting the bad guys, for estimating demand, and for tackling many other problems.
•The speech uses an array of examples to argue that much regulation is ultimately about recognising patterns in data. Machine learning helps us find those patterns.
 
Just as moving from paper maps to smartphone apps can make us better navigators, Stefan’s speech explains how the move from using traditional analysis to using machine learning can make us better regulators.
 
Mini Biography:
 
Stefan Hunt is the founder and Head of the Behavioural Economics and Data Science Unit. He has led the FCA’s use of these two fields and designed several pioneering economic analyses. He is an Honorary Professor at the University of Nottingham and has a PhD in economics from Harvard University.
 

  • Mathematical and Computational Finance Seminar
3 May 2018
16:00
to
17:30
Beatrice Acciaio
Abstract

Title: Generalized McKean-Vlasov stochastic control problems.

Abstract: I will consider McKean-Vlasov stochastic control problems 
where the cost functions and the state dynamics depend upon the joint 
distribution of the controlled state and the control process. First, I 
will provide a suitable version of the Pontryagin stochastic maximum 
principle, showing that, in the present general framework, pointwise 
minimization of the Hamiltonian with respect to the control is not a 
necessary optimality condition. Then I will take a different 
perspective, and present a variational approach to study a weak 
formulation of such control problems, thereby establishing a new 
connection between those and optimal transport problems on path space.

The talk is based on a joint project with J. Backhoff-Veraguas and R. Carmona.

  • Mathematical and Computational Finance Seminar
26 April 2018
16:00
to
17:30
Zorana Grbac
Abstract

In this talk we present a framework for discretely compounding
interest rates which is based on the forward price process approach.
This approach has a number of advantages, in particular in the current
market environment. Compared to the classical Libor market models, it
allows in a natural way for negative interest rates and has superb
calibration properties even in the presence of persistently low rates.
Moreover, the measure changes along the tenor structure are simplified
significantly. This property makes it an excellent base for a
post-crisis multiple curve setup. Two variants for multiple curve
constructions will be discussed.

As driving processes we use time-inhomogeneous Lévy processes, which
lead to explicit valuation formulas for various interest rate products
using well-known Fourier transform techniques. Based on these formulas
we present calibration results for the two model variants using market
data for caps with Bachelier implied volatilities.

  • Mathematical and Computational Finance Seminar