Forthcoming events in this series


Mon, 11 Jan 2021

10:00 - 10:45
Virtual

An invitation to matroid theory

Greg Henselman-Petrusek
(Mathematical Institute)
Further Information

Zoom Passcode: Basis

[[{"fid":"60822","view_mode":"preview","fields":{"format":"preview"},"link_text":"Matroids.pdf","type":"media","field_deltas":{"2":{"format":"preview"}},"attributes":{"class":"media-element file-preview","data-delta":"2"}}]]

Abstract

Giancarlo Rota once wrote of matroids that "It is as if one were to
condense all trends of present day mathematics onto a single
structure, a feat that anyone would a priori deem impossible, were it
not for the fact that matroids do exist" (Indiscrete Thoughts, 1997).
This makes matroid theory a natural hub through which ideas flow from
one field of mathematics to the next. At the end of our three-day
workshop, participants will understand the most common objects and
constructions in matroid theory to the depth suitable for exploring
many of these interesting connections. We will also pick up some
highly practical matroid tools for working through problems in
persistent homology, (optimal) cycle representatives, and other
objects of interest in TDA.

Condensed outline

Day 1, Lecture 1, 10-10.45am

Definitions There are many definitions of matroids. Here's how to organize them.
Examples We work with matroids every day. Here are a few you have seen.
Important properties What's so great about a matroid?

Day 1, Lecture 2, 11-11.45am

The essential operations: deletion, contraction, and dualization
Working with matroids: matrix representations

Fri, 04 Dec 2020

15:00 - 16:00
Virtual

Topological representation of cloth state for robot manipulation

Fabio Strazzeri
(Institut de Robòtica i Informàtica Industrial)
Abstract

Research on robot manipulation has focused, in recent years, on grasping everyday objects, with target objects almost exclusively rigid items. Non–rigid objects, as textile ones, pose many additional challenges with respect to rigid object manipulation. In this seminar we will present how we can employ topology to study the ``state'' of a rectangular textile using the configuration space of $n$ points on the plane. Using a CW-decomposition of such space, we can define for any mesh associated with a rectangular textile a vector in an euclidean space with as many dimensions as the number of regions we have defined. This allows us to study the distribution of such points on the cloth and define meaningful states for detection and manipulation planning of textiles. We will explain how such regions can be defined and computationally how we can assign to any mesh the corresponding region. If time permits, we will also explain how the CW-structure allows us to define more than just euclidean distance between such mesh-distributions.

Fri, 20 Nov 2020

15:00 - 16:00
Virtual

Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces

Michał Lipiński
(Jagiellonian University)
Abstract

In this talk, I will present the theory of combinatorial multivector fields for finite topological spaces, the main subject of my thesis. The idea of combinatorial vector fields came from Forman and emerged naturally from discrete Morse theory. Lately, Mrozek generalized it to the multivector fields theory for Lefschetz complexes. In our work, we simplified and extended it to the finite topological spaces settings. We developed a combinatorial counterpart for dynamical objects, such as isolated invariant sets, isolating neighbourhoods, Conley index, limit sets, and Morse decomposition. We proved the additivity property of the Conley index and the Morse inequalities. Furthermore, we applied persistence homology to study the evolution and the stability of Morse decomposition. In the last part of the talk, I will show numerical results and potential future directions from a data-analysis perspective. 

Fri, 06 Nov 2020

15:00 - 16:00
Virtual

Level-set methods for TDA on spatial data

Michelle Feng
(Caltech)
Abstract

In this talk, I will give a brief introduction to level-set methods for image analysis. I will then describe an application of level-sets to the construction of filtrations for persistent homology computations. I will present several case studies with various spatial data sets using this construction, including applications to voting, analyzing urban street patterns, and spiderwebs. I will conclude by discussing the types of data which I might imagine such methods to be suitable for analyzing and suggesting a few potential future applications of level-set based computations.

 

Fri, 23 Oct 2020

15:00 - 16:00
Virtual

Sampling and homology via bottlenecks

Oliver Gäfvert
(KTH Stockholm)
Abstract

In this talk I will present an efficient algorithm to produce a provably dense sample of a smooth compact algebraic variety. The procedure is partly based on computing bottlenecks of the variety. Using geometric information such as the bottlenecks and the local reach we also provide bounds on the density of the sample needed in order to guarantee that the homology of the variety can be recovered from the sample.

Fri, 09 Oct 2020

15:00 - 16:00
Virtual

Invariants for tame parametrised chain complexes

Barbara Giunti
(University of Modena and Reggio Emilia)
Abstract

Persistence theory provides useful tools to extract information from real-world data sets, and profits of techniques from different mathematical disciplines, such as Morse theory and quiver representation. In this seminar, I am going to present a new approach for studying persistence theory using model categories. I will briefly introduce model categories and then describe how to define a model structure on the category of the tame parametrised chain complexes, which are chain complexes that evolve in time. Using this model structure, we can define new invariants for tame parametrised chain complexes, which are in perfect accordance with the standard barcode when restricting to persistence modules. I will illustrate with some examples why such an approach can be useful in topological data analysis and what new insight on standard persistence can give us. 

Fri, 25 Sep 2020

15:00 - 16:00
Virtual

Differentiating Lychees and Grapes

Yossi Bokor
(Australian National University/University of Sydney)
Abstract

Distinguishing classes of surfaces in $\mathbb{R}^n$ is a task which arises in many situations. There are many characteristics we can use to solve this classification problem. The Persistent Homology Transform allows us to look at shapes in $\mathbb{R}^n$ from $S^{n-1}$ directions simultaneously, and is a useful tool for surface classification. Using the Julia package DiscretePersistentHomologyTransform, we will look at some example curves in $\mathbb{R}^2$ and examine distinguishing features. 

Thu, 17 Sep 2020

16:00 - 18:00
Virtual
Fri, 11 Sep 2020

15:00 - 16:00
Virtual

TDA analysis of flow cytometry data in acute lymphoblastic leukaemia patients

Salvador Chulián García
(Universidad de Cádiz)
Abstract

High dimensionality of biological data is a crucial element that is in need of different methods to unravel their complexity. The current and rich biomedical material that hospitals generate every other day related to cancer detection can benefit from these new techniques. This is the case of diseases such as Acute Lymphoblastic Leukaemia (ALL), one of the most common cancers in childhood. Its diagnosis is based on high-dimensional flow cytometry tumour data that includes immunophenotypic expressions. Not only the intensity of these markers is meaningful for clinicians, but also the shape of the points clouds generated, being then fundamental to find leukaemic clones. Thus, the mathematics of shape recognition in high dimensions can turn itself as a critical tool for this kind of data. This is why we resort to the use of tools from Topological Data Analysis such as Persistence Homology.

 

Given that ALL relapse incidence is of almost 20% of its patients, we provide a methodology to shed some light on the shape of flow cytometry data, for both relapsed and non-relapsed patients. This is done so by combining the strength of topological data analysis with the versatility of machine learning techniques. The results obtained show us topological differences between both patient sets, such as the amount of connected components and 1-dimensional loops. By means of the so-called persistence images, and for specially selected immunophenotypic markers, a classification of both cohorts is obtained, highlighting the need of new methods to provide better prognosis. 

Fri, 04 Sep 2020

15:00 - 16:00
Virtual

Geometric Fusion via Joint Delay Embeddings

Elchanan Solomon
(Duke University)
Abstract

This talk is motivated by the following question: "how can one reconstruct the geometry of a state space given a collection of observed time series?" A well-studied technique for metric fusion is Similarity Network Fusion (SNF), which works by mixing random walks. However, SNF behaves poorly in the presence of correlated noise, and always reconstructs an intrinsic metric. We propose a new methodology based on delay embeddings, together with a simple orthogonalization scheme that uses the tangency data contained in delay vectors. This method shows promising results for some synthetic and real-world data. The authors suspect that there is a theorem or two hiding in the background -- wild speculation by audience members is encouraged. 

Fri, 21 Aug 2020

15:00 - 16:00
Virtual

Noisy neurons and rainbow worms: theoretical and statistical perspectives on trees and their barcodes

Adélie Garin
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

The TMD algorithm (Kanari et al. 2018) computes the barcode of a neuron (tree) with respect to the radial or path distance from the soma (root). We are interested in the inverse problem: how to understand the space of trees that are represented by the same barcode. Our tool to study this spaces is the stochastic TNS algorithm (Kanari et al. 2020) which generates trees from a given barcode in a biologically meaningful way. 

I will present some theoretical results on the space of trees that have the same barcode, as well as the effect of adding noise to the barcode. In addition, I will provide a more combinatorial perspective on the space of barcodes, expressed in terms of the symmetric group. I will illustrate these results with experiments based on the TNS.

This is joint work with L. Kanari and K. Hess. 

Fri, 19 Jun 2020

15:00 - 16:00
Virtual

Of monks, lawyers and airports: a unified framework for equivalences in social networks

Nina Otter
(UCLA)
Abstract

One of the main concerns in social network science is the study of positions and roles. By "position" social scientists usually mean a collection of actors who have similar ties to other actors, while a "role" is a specific pattern of ties among actors or positions. Since the 1970s a lot of research has been done to develop these concepts in a rigorous way. An open question in the field is whether it is possible to perform role and positional analysis simultaneously. In joint work in progress with Mason Porter we explore this question by proposing a framework that relies on the principle of functoriality in category theory. In this talk I will introduce role and positional analysis, present some well-studied examples from social network science, and what new insights this framework might give us.

Fri, 12 Jun 2020

15:00 - 16:00
Virtual

Contagion Maps for Manifold Learning

Barbara Mahler
(University of Oxford)
Abstract

Contagion maps are a family of maps that map nodes of a network to points in a high-dimensional space, based on the activations times in a threshold contagion on the network. A point cloud that is the image of such a map reflects both the structure underlying the network and the spreading behaviour of the contagion on it. Intuitively, such a point cloud exhibits features of the network's underlying structure if the contagion spreads along that structure, an observation which suggests contagion maps as a viable manifold-learning technique. We test contagion maps as a manifold-learning tool on several different data sets, and compare its performance to that of Isomap, one of the most well-known manifold-learning algorithms. We find that, under certain conditions, contagion maps are able to reliably detect underlying manifold structure in noisy data, when Isomap is prone to noise-induced error. This consolidates contagion maps as a technique for manifold learning. 

Fri, 05 Jun 2020

15:00 - 16:00
Virtual

A topological approach to synchronization leads to explosive transition

Ginestra Bianconi
(QMUL)
Abstract

Synchronization is a collective phenomenon that pervades the natural systems from neurons to fireflies. In a network, synchronization of the dynamical variables associated to the nodes occurs when nodes are coupled to their neighbours as captured by the Kuramoto model. However many complex systems include also higher-order interactions among more than two nodes and sustain dynamical signals that might be related to higher-order simplices such as nodes of triangles. These dynamical topological signals include for instance fluxes which are dynamical variables associated to links.

In this talk I present a new topological approach [1] to synchronization on simplicial complexes. Here the theory of synchronization is combined with topology (specifically Hodge theory) for formulating the higher-order Kuramoto model that uses the higher-order Laplacians and provides the main synchronization route for topological signals. I will show that the dynamics defined on links can be projected to a dynamics defined on nodes and triangles that undergo a synchronization transition and I will discuss how this procedure can be immediately generalized for topological signals of higher dimension. Interestingly I will show that when the model includes an adaptive coupling of the two projected dynamics, the transition becomes explosive, i.e. synchronization emerges abruptly.

This model can be applied to study synchronization of topological signals in the brain and in biological transport networks as it proposes a new set of topological transformations that can reveal collective synchronization phenomena that could go unnoticed otherwise.

[1] Millán, A.P., Torres, J.J. and Bianconi, G., 2019. Explosive higher-order Kuramoto dynamics on simplicial complexes. Physical Review Letters (in press) arXiv preprint arXiv:1912.04405.

Fri, 29 May 2020

15:00 - 16:00
Virtual

Persistent Homology with Random Graph Laplacians

Tadas Temcinas
(University of Oxford)
Abstract


Eigenvalue-eigenvector pairs of combinatorial graph Laplacians are extensively used in graph theory and network analysis. It is well known that the spectrum of the Laplacian L of a given graph G encodes aspects of the geometry of G  - the multiplicity of the eigenvalue 0 counts the number of connected components while the second smallest eigenvalue (called the Fiedler eigenvalue) quantifies the well-connectedness of G . In network analysis, one uses Laplacian eigenvectors associated with small eigenvalues to perform spectral clustering. In graph signal processing, graph Fourier transforms are defined in terms of an orthonormal eigenbasis of L. Eigenvectors of L also play a central role in graph neural networks.

Motivated by this we study eigenvalue-eigenvector pairs of Laplacians of random graphs and their potential use in TDA. I will present simulation results on what persistent homology barcodes of Bernoulli random graphs G(n, p) look like when we use Laplacian eigenvectors as filter functions. Also, I will discuss the conjectures made from the simulations as well as the challenges that arise when trying to prove them. This is work in progress.
 

Fri, 15 May 2020

15:00 - 16:00
Virtual

From dynamics to combinatorics and back again

Kelly Spendlove
(Oxford)
Abstract

The last fifty years of dynamical systems theory have established that dynamical systems can exhibit extremely complex behavior with respect to both the system variables (chaos theory) and parameters (bifurcation theory). Such complex behavior found in theoretical work must be reconciled with the capabilities of the current technologies available for applications. For example, in the case of modelling biological phenomena, measurements may be of limited precision, parameters are rarely known exactly and nonlinearities often cannot be derived from first principles. 

The contrast between the richness of dynamical systems and the imprecise nature of available modeling tools suggests that we should not take models too seriously. Stating this a bit more formally, it suggests that extracting features which are robust over a range of parameter values is more important than an understanding of the fine structure at some particular parameter.

The goal of this talk is to present a high-level introduction/overview of computational Conley-Morse theory, a rigorous computational approach for understanding the global dynamics of complex systems.  This introduction will wander through dynamical systems theory, algebraic topology, combinatorics and end in game theory.

Fri, 08 May 2020

15:00 - 16:00
Virtual

Graph Filtrations with Spectral Wavelet Signatures

Ambrose Yim
(Oxford)
Abstract

We present a recipe for constructing filter functions on graphs with parameters that can optimised by gradient descent. This recipe, based on graph Laplacians and spectral wavelet signatures, do not require additional data to be defined on vertices. This allows any graph to be assigned a customised filter function for persistent homology computations and data science applications, such as graph classification. We show experimental evidence that this recipe has desirable properties for optimisation and machine learning pipelines that factors through persistent homology. 

Mon, 11 Jun 2018
14:00
N3.12

Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge

Renaud Lamboitte
(Oxford University)
Abstract

In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological methods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research practice in mathematics. Holes die when a subset of their concepts appear in the same article, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the dimension of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. We also show that authors' conceptual entropy is positively related with their contribution to homological holes, suggesting that polymaths tend to be on the frontier of research.

Fri, 01 Jun 2018
12:00
N3.12

Offset Hypersurfaces and Persistent Homology of Algebraic Varieties

Maddie Weinstein
(UC Berkeley)
Abstract

We will discuss the algebraicity of two quantities central to the computation of persistent homology. We will also connect persistent homology and algebraic optimization. Namely, we will express the degree corresponding to the distance variable of the offset hypersurface in terms of the Euclidean distance degree of the starting variety, obtaining a new way to compute these degrees. Finally, we will describe the non-properness locus of the offset construction and use this to describe the set of points that are topologically interesting (the medial axis and center points of the bounded components of the complement of the variety) and relevant to the computation of persistent homology.

Fri, 25 May 2018
12:00
N3.12

Persistent homology and the approximation of intrinsic volumes

Florian Pausinger
(Queen's University Belfast)
Abstract

Persistent homology is an algebraic tool for quantifying topological features of shapes and functions, which has recently found wide applications in data and shape analysis. In the first and introductory part of this talk I recall the underlying ideas and basic concepts of this very active field of research. In the second part, I plan to sketch a concrete application of this concept to digital image processing. 

Fri, 18 May 2018
12:00
N3.12

Which neural codes are convex?

Anne Shiu
(Texas A&M University)
Abstract

This talk focuses on algebraic and combinatorial-topological problems motivated by neuroscience. Neural codes allow the brain to represent, process, and store information about the world. Combinatorial codes, comprised of binary patterns of neural activity, encode information via the collective behavior of populations of neurons. A code is called convex if its codewords correspond to regions defined by an arrangement of convex open sets in Euclidean space. Convex codes have been observed experimentally in many brain areas, including sensory cortices and the hippocampus,where neurons exhibit convex receptive fields. What makes a neural code convex? That is, how can we tell from the intrinsic structure of a code if there exists a corresponding arrangement of convex open sets?

This talk describes how to use tools from combinatorics and commutative algebra to uncover a variety of signatures of convex and non-convex codes.

This talk is based on joint works with Aaron Chen and Florian Frick, and with Carina Curto, Elizabeth Gross, Jack Jeffries, Katie Morrison, Mohamed Omar, Zvi Rosen, and Nora Youngs.

Fri, 11 May 2018
12:00
N3.12

Multi-parameter Topological Data Analysis

Steve Oudot
(Ecole Polytechnique)
Abstract

How can we adapt the Topological Data Analysis (TDA) pipeline to use several filter functions at the same time? Two orthogonal approaches can be considered: (1) running the standard 1-parameter pipeline and doing statistics on the resulting barcodes; (2) running a multi-parameter version of the pipeline, still to be defined. In this talk I will present two recent contributions, one for each approach. The first contribution considers intrinsic compact metric spaces and shows that the so-called Persistent Homology Transform (PHT) is injective over a dense subset of those. When specialized to metric graphs, our analysis yields a stronger result, namely that the PHT is injective over a subset of full measurem which allows for sufficient statistics. The second contribution investigates the bi-parameter version of the TDA pipeline and shows a decomposition result "à la Crawley-Boevey" for a subcategory of the 2-parameter persistence modules called "exact modules". This result has an impact on the study of interlevel-sets persistence and on that of sheaves of vector spaces on the real line. 

This is joint work with Elchanan Solomon on the one hand, with Jérémy Cochoy on the other hand.

Fri, 04 May 2018
12:00
N3.12

Geometric invariants for Chemical Reaction Networks

Michael Adamer
(University of Oxford)
Abstract

Steady state chemical reaction models can be thought of as algebraic varieties whose properties are determined by the network structure. In experimental set-ups we often encounter the problem of noisy data points for which we want to find the corresponding steady state predicted by the model. Depending on the network there may be many such points and the number of which is given by the euclidean distance degree (ED degree). In this talk I show how certain properties of networks relate to the ED degree and how the runtime of numerical algebraic geometry computations scales with the ED degree.