Forthcoming events in this series


Fri, 09 Mar 2018

12:00 - 13:00
N3.12

The Matroid of Barcodes: Combinatorial Foundations in TDA

Greg Henselman
(Princeton University)
Abstract

Topological data analysis (TDA) is a robust field of mathematical data science specializing in complex, noisy, and high-dimensional data.  While the elements of modern TDA have existed since the mid-1980’s, applications over the past decade have seen a dramatic increase in systems analysis, engineering, medicine, and the sciences.  Two of the primary challenges in this field regard modeling and computation: what do topological features mean, and are they computable?  While these questions remain open for some of the simplest structures considered in TDA — homological persistence modules and their indecomposable submodules — in the past two decades researchers have made great progress in algorithms, modeling, and mathematical foundations through diverse connections with other fields of mathematics.  This talk will give a first perspective on the idea of matroid theory as a framework for unifying and relating some of these seemingly disparate connections (e.g. with quiver theory, classification, and algebraic stability), and some questions that the fields of matroid theory and TDA may mutually pose to one another.  No expertise in homological persistence or general matroid theory will be assumed, though prior exposure to the definition of a matroid and/or persistence module may be helpful.

Fri, 02 Mar 2018

12:00 - 13:00
N3.12

Tropical Coordinates on the Space of Persistence Barcodes

Sara Kalisnik
(MPI Leipzig)
Abstract

The aim of applied topology is to use and develop topological methods for applied mathematics, science and engineering. One of the main tools is persistent homology, an adaptation of classical homology, which assigns a barcode, i.e., a collection of intervals, to a finite metric space. Because of the nature of the invariant, barcodes are not well adapted for use by practitioners in machine learning tasks. We can circumvent this problem by assigning numerical quantities to barcodes, and these outputs can then be used as input to standard algorithms. I will explain how we can use tropical-like functions to coordinatize the space of persistence barcodes. These coordinates are stable with respect to the bottleneck and Wasserstein distances. I will also show how they can be used in practice.

Fri, 02 Mar 2018

11:00 - 12:00
N3.12

The Euler characteristic and topological phase transitions in networks

Fernando Antônio Nóbrega Santos
(Universidade Federal de Pernambuco)
Abstract

Phase transitions and critical phenomena are ubiquitous in Nature. They permeate physics, chemistry, biology and complex systems in general, and are characterized by the role of correlations and fluctuations of many degrees of freedom. From a mathematical viewpoint, in the vicinity of a critical point, thermodynamic quantities exhibit singularities and scaling properties. Theoretical attempts to describe classical phase transitions using tools from differential topology and Morse theory provided strong arguments pointing that a phase transition may emerge as a consequence of topological changes in the configuration space around the critical point.

On the other hand, much work was done concerning the topology of networks which spontaneously emerge in complex systems, as is the case of the genome, brain, and social networks, most of these built intrinsically based on measurements of the correlations among the constituents of the system.

We aim to transpose the topological methodology previously applied in n-dimensional manifolds, to describe phenomena that emerge from correlations in a complex system, in which case Hamiltonian models are hard to invoke. The main idea is to embed the network onto an n-dimensional manifold and to study the equivalent to level sets of the network according to a filtration parameter, which can be the probability for a random graph or even correlations from fMRI measurements as height function in the context of Morse theory.  By doing so, we were able to find topological phase transitions either in random networks and fMRI brain networks.  Moreover, we could identify high-dimensional structures, in corroboration with the recent finding from the blue brain project, where neurons could form structures up to eleven dimensions.The efficiency and generality of our methodology are illustrated for a random graph, where its Euler characteristic can be computed analytically, and for brain networks available in the human connectome project.  Our results give strong arguments that the Euler characteristic, together with the distributions of the high dimensional cliques have potential use as topological biomarkers to classify brain Networks. The above ideas may pave the way to describe topological phase transitions in complex systems emerging from correlation data.

Fri, 23 Feb 2018

12:00 - 13:00
N3.12

Local homology and stratification

Tadas Temcinas
(University of Oxford)
Abstract

I will present Vidit Nanda's paper "Local homology and stratification" (https://arxiv.org/abs/1707.00354), and briefly explain how in my master thesis I am applying ideas from the paper to study word embedding problems.


Abstract of the paper:  We outline an algorithm to recover the canonical (or, coarsest) stratification of a given regular CW complex into cohomology manifolds, each of which is a union of cells. The construction proceeds by iteratively localizing the poset of cells about a family of subposets; these subposets are in turn determined by a collection of cosheaves which capture variations in cohomology of cellular neighborhoods across the underlying complex. The result is a finite sequence of categories whose colimit recovers the canonical strata via (isomorphism classes of) its objects. The entire process is amenable to efficient distributed computation.