Forthcoming events in this series


Thu, 24 Nov 2022
14:00
N3.12

Compactification of 6d N=(1,0) quivers, 4d SCFTs and their holographic dual Massive IIA backgrounds

Ricardo Stuardo
(Swansea)
Abstract

We study an infinite family of Massive Type IIA backgrounds that holographically describe the twisted compactification of N=(1,0) six-dimensional SCFTs to four dimensions. The analysis of the branes involved suggests a four dimensional linear quiver QFT, that deconstructs the theory in six dimensions. For the case in which the system reaches a strongly coupled fixed point, we calculate some observables that we compare with holographic results. Two quantities measuring the number of degrees of freedom for the flow across dimensions are studied.

Thu, 17 Nov 2022
14:00
L6

Dispersive Sum Rules in AdS${}_2$

Waltraut Knop
(Stony Brook)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Dispersion relations for S-matrices and CFT correlators translate UV consistency into bounds on IR observables. In this talk, I will begin with briefly introducing dispersionrelations in 2D flat space which will guide the analogous discussion in AdS2/CFT1. I will introduce a set of functionals acting on the 1D CFT. These will allow us to prove bounds on higher-derivative couplings in weakly coupled non-gravitational EFTs in AdS2. At the leading order in the bulk-point limit, the bounds agree with the flat-space result. Furthermore we can compute the leading universal effect of finite AdS radius on the bounds.

Thu, 10 Nov 2022
14:00
S1.37

Non-invertible Symmetries in 5d Chern-Simons theories

Eduardo Garcia-Valdecasas
(Harvard)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Electric 1-form symmetries are generically broken in gauge theories with Chern-Simons terms. In this talk we discuss how infinite subsets of these symmetries become non-invertible topological defects. Time permitting we will also discuss generalizations and applications to the Swampland program in relation to the completeness hypothesis.

Thu, 03 Nov 2022
13:45
N3.12

Uniqueness of supersymmetric AdS$_5$ black holes

Sergei G. Ovchinnikov
(Edinburgh University)
Abstract

The classification of anti de Sitter black holes is an open problem of central importance in holography. In this talk, I will present new advances in classification of supersymmetric solutions to five-dimensional minimal gauged supergravity. In particular, we prove a black hole uniqueness theorem within a ‘Calabi-type’ subclass of solutions with biaxial symmetry. This subclass includes all currently known black hole solutions within this theory.

Thu, 20 Oct 2022
14:00
L6

A tale of 2-groups: Dp(USp(2N)) theories

Alessandro Mininno
(Universität Hamburg)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

After a brief introduction, I elucidate a technique, dubbed "bootstrap'', which generates an infinite family of D_p(G) theories, where for a given arbitrary group G and a parameter b, each theory in the same family has the same number of mass parameters, same number of marginal deformations, same 1-form symmetry, and same 2-group structure. This technique is utilized to establish the presence or absence of the 2-group symmetries in several classes of D_p(G) theories. I, then, argue that we found the presence of 2-group symmetries in a class of Argyres-Douglas theories, called D_p(USp(2N)), which can be realized by Z_2-twisted compactification of the 6d N=(2,0) of the D-type on a sphere with an irregular twisted puncture and a regular twisted full puncture. I will also discuss the 3d mirror theories of general D_p(USp(2N)) theories that serve as an important tool to study their flavor symmetry and Higgs branch.

Thu, 13 Oct 2022
14:00
L6

1-form symmetry versus large N QCD

Theodore Jacobson
(University of Minnesota)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

It has long been appreciated that in QCD-like theories without fundamental matter, confinement can be given a sharp characterization in terms of symmetry. More recently, such symmetries have been identified as 1-form symmetries, which fit into the broader category of generalized global symmetries.  In this talk I will discuss obstructions to the existence of a 1-form symmetry in large N QCD, where confinement is a sharp notion. I give general arguments for this disconnect between 1-form symmetries and confinement, and use 2d scalar QCD on the lattice as an explicit example.  

Thu, 06 Oct 2022
14:00
N3.12

Gravitational Regge bounds

Kelian Haring
(Cern)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

I will review the basic assumptions and spell out the arguments that lead to the bound on the Regge growth of gravitational scattering amplitudes. I will discuss the Regge bounds both at fixed transfer momentum and smeared over it. Our basic conclusion is that gravitational scattering amplitudes admit dispersion relations with two subtractions. For a sub-class of smeared amplitudes, black hole formation reduces the number of subtractions to one. Finally, I will discuss bounds on local growth derived using dispersion relations. This talk is based on https://arxiv.org/abs/2202.08280.

Fri, 17 Jun 2022

16:00 - 17:00
L5

Defect Central Charges

Adam Chalabi
(Southampton University)
Abstract

Conformal defects can be characterised by their contributions to the Weyl anomaly. The coefficients of these terms, often called defect central charges, depend on the particular defect insertion in a given conformal field theory. I will review what is currently known about defect central charges across dimensions, and present novel results. I will discuss many examples where they can be computed exactly without requiring any approximations or limits. Particular emphasis will be placed on recently developed tools for superconformal defects as well as defects in free theories.

Fri, 10 Jun 2022

16:00 - 17:00
N4.01

From Gravitational Orbits to Quantum Scars

Matthew Dodelson
(Cern)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

I will describe recent work with Zhibeodov on the boundary interpretation of orbits around an AdS black hole. When the orbits are far away from the black hole, these orbits describe heavy-light double-twist operators on the boundary. I will discuss how the dimensions of these operators can be computed exactly in terms of quasinormal modes in the bulk, using techniques from a paper to appear soon with Grassi, Iossa, Lichtig, and Zhiboedov. Then I will explain how these results are related to the concept of quantum scars, which are eigenstates that do not obey ETH. 

Fri, 03 Jun 2022

16:00 - 17:00
N4.01

Hydrodynamic dispersion relations at finite coupling

Petar Tadic
(Yale University)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

Hydrodynamic excitations corresponding to sound and shear modes in fluids are characterized by gapless dispersion relations. In the hydrodynamic gradient expansion, their frequencies are represented by power series in spatial momenta. In this talk we will discuss the convergence properties of the hydrodynamic series by studying the associated spectral curve in the space of complexified frequency and complexified spatial momentum. For the N=4 supersymmetric Yang-Mills plasma at infinite 't Hooft coupling, we will use the holographic methods to demonstrate that the derivative expansions have finite non-zero radii of convergence. Obstruction to the convergence of hydrodynamic series arises from level-crossings in the quasinormal spectrum at complex momenta. We will discuss how finiteness of 't Hooft coupling affects the radius of convergence. We will show that the purely perturbative calculation in terms of inverse 't Hooft coupling gives the increasing radius of convergence when the coupling is decreasing. Applying the non-perturbative resummation techniques will make radius of convergence piecewise continuous function that decreases after the initial increase. Finally, we will provide arguments in favour of the non-perturbative approach and show that the presence of nonperturbative modes in the quasinormal spectrum can be indirectly inferred from the analysis of perturbative critical points.

Fri, 27 May 2022

16:00 - 17:00
N4.01

Deconfining N=2 SCFTs

Matteo Lotito
(University of Massachusetts)
Further Information

It is also possible to join online via Microsoft Teams.

Abstract

In this talk I will describe a systematic approach, introduced in our recent work 2111.08022, to construct Lagrangian descriptions for a class of strongly interacting N=2 SCFTs. I will review the main ingredients of these constructions, namely brane tilings and the connection to gauge theories. For concreteness, I will then specialize to the case of the simplest of such geometrical setups, as in the paper, even though our approach should be much more general. I will comment on some low rank examples of the theories we built, that are well understood by (many) alternative approaches and conclude with some open questions and ideas for future directions to explore.

Fri, 20 May 2022

16:00 - 17:00
L5

Non-Invertible Symmetries from Discrete Gauging and Completeness of the Spectrum

Guillermo Arias-Tamargo
(Oviedo)
Abstract

We study global 1- and (d−2)-form symmetries for gauge theories based on disconnected gauge groups which include charge conjugation. For pure gauge theories, the 1-form symmetries are shown to be non-invertible. In addition, being the gauge groups disconnected, the theories automatically have a Z2
global (d−2)-form symmetry. We propose String Theory embeddings for gauge theories based on these groups. Remarkably, they all automatically come with twist vortices which break the (d−2)-form global symmetry. 

Fri, 13 May 2022

16:00 - 17:00
N4.01

The Supersymmetric Index and its Holographic Interpretation

Ohad Mamroud
(Weizmann Institute)
Further Information

It is possible to also join online via Microsoft Teams.

Abstract

I'll review 2104.13932, where we analyze the supersymmetric index of N=4 SU(N) Super Yang-Mills using the Bethe Ansatz approach, expressing it as a sum and concentrating on some family of contributions to the sum. We show that in the large N limit each term in this family corresponds to the contribution of a different euclidean black hole to the partition function of the dual gravitational theory. By taking into account non-perturbative contributions (wrapped D3-branes), we further show a one to one match between the contributions of the gravitational saddles and this family of contributions to the index, both at the perturbative and non-perturbative levels. I'll end with some new results regarding the Bethe Ansatz expansion and the information one could extract from it.

Fri, 06 May 2022

16:00 - 17:00
L5

On-shell Correlators and Color-Kinematics Duality in Curved Spacetimes

Allic Sivaramakrishnan
(University of Kentucky)
Further Information

It is also possible to join online via Zoom.

Abstract

We define a perturbatively calculable quantity—the on-shell correlator—which furnishes a unified description of particle dynamics in curved spacetime. Specializing to the case of flat and anti-de Sitter space, on-shell correlators coincide precisely with on-shell scattering amplitudes and boundary correlators, respectively. Remarkably, we find that symmetric manifolds admit a generalization of on-shell kinematics in which the corresponding momenta are literally the isometry generators of the spacetime acting on the external kinematic data. These isometric momenta are intrinsically non-commutative but exhibit on-shell conditions that are identical to those of flat space, thus providing a common language for computing and representing on-shell correlators which is agnostic about the underlying geometry. 

As applications of these tools, we compute n-point scalar correlators in AdS in terms of isometric momenta. In many cases, the results are direct lifts of flat-space expressions. We provide field-theoretic proofs of color-kinematics duality and BCJ relations in AdS at n-points in biadjoint scalar theory and the nonlinear sigma model. We discuss possible extensions to generic curved spacetimes without symmetry.

Fri, 18 Mar 2022
16:00
L6

Plaquette-dimer liquid with emergent fracton

Yizhi You
(Oxford University)
Further Information

The speaker will be in-person. It is also possible to join virtually via zoom.

Abstract

We consider close-packed tiling models of geometric objects -- a mixture of hardcore dimers and plaquettes -- as a generalisation of the familiar dimer models. Specifically, on an anisotropic cubic lattice, we demand that each site be covered by either a dimer on a z-link or a plaquettein the x-y plane. The space of such fully packed tilings has an extensive degeneracy. This maps onto a fracton-type `higher-rank electrostatics', which can exhibit a plaquette-dimer liquid and an ordered phase. We analyse this theory in detail, using height representations and T-duality to demonstrate that the concomitant phase transition occurs due to the proliferation of dipoles formed by defect pairs. The resultant critical theory can be considered as a fracton version of the Kosterlitz-Thouless transition. A significant new element is its UV-IR mixing, where the low energy behavior of the liquid phase and the transition out of it is dominated by local (short-wavelength) fluctuations, rendering the critical phenomenon beyond the renormalization group paradigm.

Fri, 04 Mar 2022
16:00
N4.01

Infrared phases of QCD in two dimensions

Matthew Yu
(Perimeter Institute)
Further Information

It is also possible to join virtually via Teams.

Abstract

Understanding dynamics of strongly coupled theories is a problem that garners great interest from many fields of physics. In order to better understand theories in 3+1d one can look to lower dimensions for theories which share some properties, but also may exhibit new features that are useful to understand the dynamics. QCD in 1+1d is a strongly coupled theory in the IR, and this talk will explain how to determine if these theories are gapped or gapless in the IR. Moreover, I will describe what IR theory that UV QCD flows to and discuss the IR dynamics. 

Fri, 25 Feb 2022
16:00

Exact QFT duals of AdS black holes

Saebyeok Jeong
(Rutgers)
Further Information

It is also possible to join virtually via Teams.

Abstract

Recently, it has been more clearly understood that the N=4 superconformal index leads to the microstate counting of the BPS black holes in AdS_5 X S^5. The leading N^2 behavior of the free energy was shown in various ways to match that of the known BPS black hole in the gravity side, but this correspondence has not been realized at the level of the saddle point analysis of the full matrix model for the N=4 index. Here, I will try to clarify how such saddles corresponding to the BPS black holes arise as 'areal' distributions. The talk is based on https://arxiv.org/abs/2111.10720 with Sunjin Choi, Seok Kim, and Eunwoo Lee; https://arxiv.org/abs/2103.01401 with Sunjin Choi and Seok Kim.

Fri, 18 Feb 2022
16:00
C1

Fractons

Yizhi You
(Oxford)
Fri, 11 Feb 2022
16:00
C6

Renormalization Group Flows on Line Defects

Avia Raviv-Moshe
(Simons Center Stony Brook)
Further Information

It is also possible to join virtually via zoom.

Abstract

We will consider line defects in d-dimensional CFTs. The ambient CFT places nontrivial constraints on renormalization group flows on such line defects. We will see that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We will demonstrate this generalization in some concrete examples, including a flow between Wilson loops in 4 dimensions, and an O(3) bosonic theory coupled to an impurity in the large spin representation of the bulk global symmetry.

Fri, 04 Feb 2022
16:00
N4.01

Gravity factorized

Jorrit Kruthoff
(Stanford University)
Further Information

It is also possible to join virtually via Teams.

Abstract

There are various aspects of the AdS/CFT correspondence that are rather mysterious. For example, how does the gravitational theory know about a discrete boundary spectrum or how does it know moments of the partition function factorize, given the existence of connected (wormhole) geometries? In this talk I will discuss some recent efforts with Andreas Blommaert and Luca Iliesiu on these two puzzles in two dimensional dilaton gravities. These gravity theories are simple enough that we can understand and propose a resolution to the discreteness and factorization puzzles. I will show that a tiny but universal bilocal spacetime interaction in the bulk is enough to ensure factorization, whereas modifying the dilaton potential with tiny corrections gives a discrete boundary spectrum. We will discuss the meaning of these corrections and how they could be related to resolutions of the same puzzles in higher dimensions. 

Fri, 28 Jan 2022
16:00
N4.01

Generalized Symmetries of the Graviton

Javier Magan
(UPenn)
Further Information

It is also possible to join virtually via Teams.

Abstract

In this talk we discuss the set of generalized symmetries associated with the free graviton theory in four dimensions. These are generated by ring-like operators. As for the Maxwell field, we find a set of “electric” and a dual set of “magnetic” topological operators and compute their algebra. The associated electric and magnetic fields satisfy a set of constraints equivalent to the ones of a stress tensor of a 3d CFT. This implies that the generalized symmetry is charged under space-time symmetries, and it provides a bridge between linearized gravity and the tensor gauge theories that have been introduced recently in the context of fractonic systems in condensed matter physics.

Fri, 21 Jan 2022
16:00
Virtual

On fixed points and phase transitions in five dimensions

Francesco Mignosa
(SISSA)
Abstract

Supersymmetric gauge theories in five dimensions, although power counting non-renormalizable, are known to be in some cases UV completed by a superconformal field theory. Many tools, such as M-theory compactification and pq-web constructions, were used in recent years in order to deepen our understanding of these theories. This framework gives us a concrete way in which we can try to search for additional IR conformal field theory via deformations of these well-known superconformal fixed points. Recently, the authors of 2001.00023 proposed a supersymmetry breaking mass deformation of the E_1theory which, at weak gauge coupling, leads to pure SU(2) Yang-Mills and which was conjectured to lead to an interacting CFT at strong coupling. During this talk, I will provide an explicit geometric construction of the deformation using brane-web techniques and show that for large enough gauge coupling a global symmetry is spontaneously broken and the theory enters a new phase which, at infinite coupling, displays an instability. The Yang-Mills and the symmetry broken phases are separated by a phase transition. Quantum corrections to this analysis are discussed, as well as possible outlooks. Based on arXiv: 2109.02662.

Fri, 03 Dec 2021
16:00
N4.01

G2 instantons in twisted M-theory

Jihwan Oh
(Oxford)
Further Information

It is also possible to join online via Zoom.

Abstract

Computing Donaldson-Thomas partition function of a G2 manifold has been a long standing problem. The key step for the problem is to understand the G2 instanton moduli space. I will discuss a string theory way to study the G2 instanton moduli space and explain how to compute the instanton partition function for a certain G2 manifold. An important insight comes from the twisted M-theory on the G2 manifold. This talk is based on a work with Michele del Zotto and Yehao Zhou.