Forthcoming events in this series


Tue, 08 Nov 2022

15:30 - 16:30
L6

Gaussian multiplicative chaos measures, Painlevé equations, and conformal blocks

Harini Desiraju
(University of Sydney)
Abstract

Conformal blocks appear in several areas of mathematical physics from random geometry to black hole physics. A probabilistic notion of conformal blocks using gaussian multiplicative chaos measures was recently formulated by Promit Ghosal, Guillaume Remy, Xin Sun, Yi Sun (arxiv:2003.03802). In this talk, I will show that the semiclassical limit of the probabilistic conformal blocks recovers a special case of the elliptic form of Painlevé VI equation, thereby proving a conjecture by Zamolodchikov. This talk is based on an upcoming paper with Promit Ghosal and Andrei Prokhorov.

Tue, 01 Nov 2022

15:30 - 16:30
L6

Entanglement negativity and mutual information after a quantum quench: Exact link from space-time duality

Katja Klobas
(University of Nottingham)
Abstract

I will present recent results on the growth of entanglement between two adjacent regions in a tripartite, one-dimensional many-body system after a quantum quench. Combining a replica trick with a space-time duality transformation a universal relation between the entanglement negativity and Renyi-1/2 mutual information can be derived, which holds at times shorter than the sizes of all subsystems. The proof is directly applicable to any local quantum circuit, i.e., any lattice system in discrete time characterised by local interactions, irrespective of the nature of its dynamics. The derivation indicates that such a relation can be directly extended to any system where information spreads with a finite maximal velocity. The talk is based on Phys. Rev. Lett. 129, 140503 (2022).

Tue, 25 Oct 2022

15:30 - 16:30
L6

On the asymptotic analysis of the Calogero-Painlevé systems and the Tracy-Widom$_\beta$ distribution for $\beta$=6

Alexander Its
(Indiana-Purde University)
Further Information

Seminar Cancelled

Abstract

The Calogero-Painlevé systems were introduced in 2001 by K. Takasaki as a natural generalization of the classical Painlevé equations to the case of the several Painlevé “particles” coupled via the Calogero type interactions. In 2014, I. Rumanov discovered a remarkable fact that a particular case of the Calogero– Painlevé II equation describes the Tracy-Widom distribution function for the general $\beta$-ensembles with the even values of parameter $\beta$. in 2017 work of M. Bertola, M. Cafasso , and V. Rubtsov, it was proven that all Calogero-Painlevé systems are Lax integrable, and hence their solutions admit a Riemann-Hilbert representation. This important observation has opened the door to rigorous asymptotic analysis of the Calogero-Painlevé equations which in turn yields the possibility of rigorous evaluation of the asymptotic behavior of the Tracy-Widom distributions for the values of $\beta$ beyond the classical $\beta =1, 2, 4$. In the talk these recent developments will be outlined with a special focus on the Calogero-Painlevé system corresponding to $\beta = 6$. This is a joint work with Andrei Prokhorov.

Tue, 18 Oct 2022

15:30 - 16:30
L6

Universal characteristics of deep neural network loss surfaces from random matrix theory

Nick Baskerville
(University of Bristol)
Abstract

Neural networks are the most practically successful class of models in modern machine learning, but there are considerable gaps in the current theoretical understanding of their properties and success. Several authors have applied models and tools from random matrix theory to shed light on a variety of aspects of neural network theory, however the genuine applicability and relevance of these results is in question. Most works rely on modelling assumptions to reduce large, complex matrices (such as the Hessians of neural networks) to something close to a well-understood canonical RMT ensemble to which all the sophisticated machinery of RMT can be applied to yield insights and results. There is experimental work, however, that appears to contradict these assumptions. In this talk, we will explore what can be derived about neural networks starting from RMT assumptions that are much more general than considered by prior work. Our main results start from justifiable assumptions on the local statistics of neural network Hessians and make predictions about their spectra than we can test experimentally on real-world neural networks. Overall, we will argue that familiar ideas from RMT universality are at work in the background, producing practical consequences for modern deep neural networks.

 

Tue, 11 Oct 2022

15:30 - 16:30
L6

Analysis of solitonic interactions and random matrix theory

Ken Mclaughlin
(Tulane University, USA)
Abstract

I will describe the interaction between a single soliton and a gas of solitons, providing for the first time a mathematical justification for the kinetic theory as posited by Zakharov in the 1970s.  Then I will explain how to use random matrix theory to introduce randomness into a large collection of solitons.

Tue, 14 Jun 2022

15:30 - 16:30
L6

Extreme eigenvalues of the Jacobi Ensembles

Brian Winn
(Loughborough University)
Abstract

The Jacobi Ensembles of random matrices have joint distribution of eigenvalues proportional to the integration measure in the Selberg integral. They can also be realised as the singular values of principal submatrices of random unitaries. In this talk we will review some old and new results concerning the distribution of the largest and smallest eigenvalues.

Mon, 13 Jun 2022

12:45 - 13:45
Online

Averaging over approximate CFTs

Alexandre Belin
(Cern)
Further Information

This seminar has been canceled.

Abstract

In this talk, I will investigate the origin of Euclidean wormholes in the gravitational part integral in the context of AdS/CFT. These geometries are confusing since they prevent products of partition functions to factorize, as they should in any quantum mechanical system. I will briefly review the different proposals for the origin of these wormholes, one of which is that one should consider ensemble of average of boundary systems instead of a fixed quantum system with a fixed Hamiltonian. I will explain that it seems unlikely that one can average over CFTs and present a new idea: averaging over approximate CFTs, which I will define. I will then study the variance of the crossing equation in an ensemble relevant for 3d gravity. Based on work in progress with de Boer, Jafferis, Nayak and Sonner.

Tue, 31 May 2022

15:30 - 16:30
L6

Magic squares and the symmetric group

Ofir Gorodetsky
(University of Oxford)
Abstract

In 2004, Diaconis and Gamburd computed statistics of secular coefficients in the circular unitary ensemble. They expressed the moments of the secular coefficients in terms of counts of magic squares. Their proof relied on the RSK correspondence. We'll present a combinatorial proof of their result, involving the characteristic map. The combinatorial proof is quite flexible and can handle other statistics as well. We'll connect the result and its proof to old and new questions in number theory, by formulating integer and function field analogues of the result, inspired by the Random Matrix Theory model for L-functions.

Partly based on the arXiv preprint https://arxiv.org/abs/2102.11966

Tue, 24 May 2022

15:30 - 16:30
L5

Correlations of the Riemann Zeta on the critical line

Valeriya Kovaleva
(University of Oxford)
Further Information

Note the unusual venue.

Abstract

In this talk we will discuss the correlations of the Riemann Zeta in various ranges, and prove a new result for correlations of squares. This problem is closely related to correlations of the characteristic polynomial of CUE with a very subtle difference. We will explain where this difference comes from, and what it means for the moments of moments of the Riemann Zeta, and its maximum in short intervals.

Tue, 17 May 2022

15:30 - 16:30
L6

Random landscape built by superposition of random plane waves

Bertrand Lacroix-A-Chez-Toine
(King's College London)
Abstract

Characterising the statistical properties of high dimensional random functions has been one of the central focus of the theory of disordered systems, and notably spin glasses, over the last decades. Applications to machine learning via deep neural network has seen a resurgence of interest towards this problem in recent years. The simplest yet non-trivial quantity to characterise these landscapes is the annealed total complexity, i.e. the rate of exponential growth of the average number of stationary points (or equilibria) with the dimension of the underlying space. A paradigmatic model for such random landscape in the $N$-dimensional Euclidean space consists of an isotropic harmonic confinement and a Gaussian random function, with rotationally and translationally invariant covariance [1]. The total annealed complexity in this model has been shown to display a ”topology trivialisation transition”: for weak confinement, the number of stationary points is exponentially large (positive complexity) while for strong confinement there is typically a single stationary point (zero complexity).

In this talk, I will present recent results obtained for a distinct exactly solvable model of random lanscape in the $N$-dimensional Euclidean space where the random Gaussian function is replaced by a superposition of $M > N$ random plane waves [2]. In this model, we compute the total annealed complexity in the limit $N\rightarrow\infty$ with $\alpha = M/N$ fixed and find, in contrast to the scenario exposed above, that the complexity remains strictly positive for any finite value of the confinement strength. Hence, there is no ”topology trivialisation transition” for this model, which seems to be a representative of a distinct class of universality.

 

References:

[1] Y. V. Fyodorov, Complexity of Random Energy Landscapes, Glass Transition, and Absolute Value of the Spectral Determinant of Random Matrices, Phys. Rev. Lett. 92, 240601 (2004) Erratum: Phys. Rev. Lett. 93, 149901(E) (2004).

[2] B. Lacroix-A-Chez-Toine, S. Belga-Fedeli, Y. V. Fyodorov, Superposition of Random Plane Waves in High Spatial Dimensions: Random Matrix Approach to Landscape Complexity, arXiv preprint arXiv:2202.03815, submitted to J. Math. Phys.

Tue, 10 May 2022

15:30 - 16:30
L6

Random matrix theory as a tool for analysing biological data

Anna Maltsev
(Queen Mary University)
Abstract

The sinoatrial node (SAN) is the pacemaker region of the heart.
Recently calcium signals, believed to be crucially important in heart
rhythm generation, have been imaged in intact SAN and shown to be
heterogeneous in various regions of the SAN. However, calcium imaging
is noisy, and the calcium signal heterogeneity has not been
mathematically analyzed to distinguish meaningful signals from
randomness or to identify signalling regions in an objective way. In
this work we apply methods of random matrix theory (RMT) developed for
financial data and used for analysis of various biological data sets
including β-cell collectives and EEG data. We find eigenvalues of the
correlation matrix that deviate from RMT predictions, and thus are not
explained by randomness but carry additional meaning. We use
localization properties of the eigenvectors corresponding to high
eigenvalues to locate particular signalling modules. We find that the
top eigenvector captures a common response of the SAN to action
potential. In some cases, the eigenvector corresponding to the second
highest eigenvalue appears to yield a possible pacemaker region as its
calcium signals predate the action potential. Next we study the
relationship between covariance coefficients and distance and find
that there are long range correlations, indicating intercellular
interactions in most cases. Lastly, we perform an analysis of nearest
neighbor eigenvalue distances and find that it coincides with the
universal Wigner surmise. On the other hand, the number variance,
which captures eigenvalue correlations, is a parameter that is
sensitive to experimental conditions. Thus RMT application to SAN
allows to remove noise and the global effects of the action potential
and thereby isolate the correlations in calcium signalling which are
local. This talk is based on joint work with Chloe Norris with a
preprint found here:
https://www.biorxiv.org/content/10.1101/2022.02.25.482007v1.

Tue, 03 May 2022

15:30 - 16:30
Online

Fluctuations of the Characteristic Polynomial of Random Jacobi Matrices

Fanny Augeri
(Weizmann Institute of Science)
Abstract

The characteristic polynomial of a random Hermitian matrix induces naturally a field on the real line. In the case of the Gaussian Unitary ensemble (GUE), this fields is expected to have a very special correlation structure: the logarithm of this field is log-correlated and its maximum is at the heart of a conjecture from Fyodorov and Simm predicting its asymptotic behavior.   As a first step in this direction, we obtained in collaboration with R. Butez and O. Zeitouni, a central limit theorem for the logarithm of the characteristic polynomial of the Gaussian beta Ensembles and for a certain class of random Jacobi matrices. In this talk, I will explain how the tridiagonal representation of the GUE and orthogonal polynomials techniques allow us to analyse the fluctuations of the characteristic polynomial.

Tue, 26 Apr 2022

15:30 - 16:30
L6

Emergent random matrix behaviour in dual-unitary circuit dynamics

Pieter Claeys
(University of Cambridge)
Abstract

The dynamics of quantum many-body systems is intricately related to random matrix theory (RMT), to such a degree that quantum chaos is even defined through random matrix level statistics. However, exact results on this connection are typically precluded by the exponentially large Hilbert space. After a short introduction to the role of RMT in many-body dynamics, I will show how dual-unitary circuits present a minimal model of quantum chaos where this connection can be made rigorous. This will be illustrated using a new kind of emergent random matrix behaviour following a quantum quench: starting from a time-evolved state, an ensemble of pure states supported on a small subsystem can be generated by performing projective measurements on the remainder of the system, leading to a projected ensemble. In chaotic quantum systems it was conjectured that such projected ensembles become indistinguishable from the uniform Haar-random ensemble and lead to a quantum state design, which can be shown to hold exactly in dual-unitary circuit dynamics.

Tue, 08 Mar 2022

15:30 - 16:30
Virtual

Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training

Stefan Zohren
(University of Oxford)
Abstract

In this talk we cover recent work in collaboration with Diego Granziol and Steve Roberts where we study the effect of mini-batching on the loss landscape of deep neural networks using spiked, field-dependent random matrix theory. We demonstrate that the magnitude of the extremal values of the batch Hessian are larger than those of the empirical Hessian and derive an analytical expressions for the maximal learning rates as a function of batch size, informing practical training regimens for both stochastic gradient descent (linear scaling) and adaptive algorithms, such as Adam (square root scaling), for smooth, non-convex deep neural networks. Whilst the linear scaling for stochastic gradient descent has been derived under more restrictive conditions, which we generalise, the square root scaling rule for adaptive optimisers is, to our knowledge, completely novel. For stochastic second-order methods and adaptive methods, we derive that the minimal damping coefficient is proportional to the ratio of the learning rate to batch size. We validate our claims on the VGG/WideResNet architectures on the CIFAR-100 and ImageNet datasets. 

Tue, 01 Mar 2022

15:30 - 16:30
Virtual

CLTs for Pair Dependent Statistics of Circular Beta Ensembles

Ander Aguirre
(University of California Davis)
Abstract

In this talk, we give an overview of recent results on the fluctuation of the statistic $\sum_{i\neq j} f(L_N(\theta_i-\theta_j))$ for the Circular Beta Ensemble in the global, mesoscopic and local regimes. This work is morally related to Johansson's 1988 CLT for the linear statistic $\sum_i f(\theta_i)$ and Lambert's subsequent 2019 extension to the mesoscopic regime. The special case of the CUE ($\beta=2$) in the local regime $L_N=N$ is motivated by Montgomery's study of pair correlations of the rescaled zeros of the Riemann zeta function. Our techniques are of combinatorial nature for the CUE and analytical for $\beta\neq2$.

Tue, 15 Feb 2022

15:30 - 16:30
Virtual

A handful of moment computations of characteristic polynomials and their derivatives in the classical compact ensembles

Emilia Alvarez
(University of Bristol)
Abstract

I will present a collection of moment computations over the unitary, symplectic and special orthogonal matrix ensembles that I've done throughout my thesis. I will focus on the methods used, the motivation from number theory, the relationship to Painlev\'e equations, and directions for future work.

Tue, 08 Feb 2022

15:30 - 16:30
Virtual

Non-intersecting Brownian motion and compact Lie groups

Alex Little
(University of Bristol)
Abstract

In many contexts a correspondence has been found between the classical compact groups and certain boundary conditions -- $U(n)$ corresponding to periodic, $USp(2n)$ corresponding to Dirichlet, $SO(2n)$ corresponding to Neumann and $SO(2n+1)$ corresponding to Zaremba. In this talk, I will try to elucidate this correspondence in Lie theoretic terms and in the process relate random matrix theory to Yang-Mills theory, free fermions and modular forms.

Mon, 07 Feb 2022

12:45 - 13:45
Virtual

On systems of maximal quantum chaos

Mike Blake
(University of Bristol)
Further Information

Note the unusual time and date

Abstract

A remarkable feature of chaos in many-body quantum systems is the existence of a bound on the quantum Lyapunov exponent. An important question is to understand what is special about maximally chaotic systems which saturate this bound. Here I will discuss a proposal for a `hydrodynamic' origin of chaos in such systems, and discuss hallmarks of maximally chaotic systems. In particular I will discuss how in maximally chaotic systems there is a suppression of exponential growth in commutator squares of generic few-body operators. This suppression appears to indicate that the nature of operator scrambling in maximally chaotic systems is fundamentally different to scrambling in non-maximally chaotic systems.

Tue, 25 Jan 2022

15:30 - 16:30
Virtual

Gaussian Multiplicative Chaos for Gaussian Orthogonal and Symplectic Ensembles

Pax Kivimae
(Northwestern University)
Abstract

In recent years, our understanding of the asymptotic behavior of characteristic polynomials of random matrices has seen much progression. A key paradigm in this area is that the asymptotic behavior is often captured by an appropriate family of Gaussian multiplicative chaos (GMC) measures (defined heuristically as the normalized exponential of log-correlated random fields). Indeed, such results have been shown for Harr distributed matrices for U(N), O(N), and Sp(2N), as well as for one-cut Hermitian invariant ensembles (and in particular, GUE(N)). In this talk we explain an extension of these results to GOE(2N) and GSE(N). The key tool is a new asymptotic relation between the moments of the characteristic polynomials of all three classical ensembles. 

Tue, 18 Jan 2022

15:30 - 16:30
Virtual

Quantum chaos and integrable structures in quantum resonant systems

Marine De Clerck
(Vrije Universiteit Brussel)
Abstract

I will present a study of integrable structures and quantum chaos in a class of infinite-dimensional though computationally tractable models, called quantum resonant systems. These models, together with their classical counterparts, emerge in various areas of physics, such as nonlinear dynamics in anti-de Sitter spacetime, but also in Bose-Einstein condensate physics. The class of classical models displays a wide range of integrable properties, such as the existence of Lax pairs, partial solvability or generic chaotic dynamics. This opens a window to investigate these properties from the perspective of the corresponding quantum theory by effectively diagonalising finite-sized matrices and exploring level spacing statistics. We will furthermore analyse the implications of the symmetries for the spectrum of resonant models with partial solvability and discuss how the rich integrable structures can be exploited to constructed novel quantum coherent states that effectively capture sophisticated nonlinear solutions in the classical theory.

Tue, 30 Nov 2021

15:30 - 16:30
Virtual

The Ratios Conjecture over function fields

Alexandra Florea
(UCI)
Abstract

I will talk about some recent joint work with H. Bui and J. Keating where we study the Ratios Conjecture for the family of quadratic L-functions over function fields. I will also discuss the closely related problem of obtaining upper bounds for negative moments of L-functions, which allows us to obtain partial results towards the Ratios Conjecture in the case of one over one, two over two and three over three L-functions. 

Tue, 23 Nov 2021

15:30 - 16:30
L6

Can one hear a real symmetric matrix?

Uzy Smilansky
(Weizmann Institute of Science)
Abstract

The question asked in the title is addressed from two points of view: First, we show that providing enough (term to be explained) spectral data, suffices to reconstruct uniquely generic (term to be explained) matrices. The method is well defined but requires somewhat cumbersome computations. Second, restricting the attention to banded matrices with band-width much smaller than the dimension, one can provide more spectral data than the number of unknown matrix elements. We make use of this redundancy to reconstruct generic banded matrices in a much more straight-forward fashion where the “cumbersome computations” can be skipped over. Explicit criteria for a matrix to be in the non-generic set are provided.

 

Tue, 09 Nov 2021

15:30 - 16:30
L6

Hermitian matrix model with non-trivial covariance and relations to quantum field theory

Alexander Hock
(University of Oxford)
Abstract

Hermitian matrix models with non-trivial covariance will be introduced. The Kontsevich Model is the prime example, which was used to prove Witten's conjecture about the generating function of intersection numbers of the moduli space $\overline{\mathcal{M}}_{g,n}$. However, we will discuss these models in a different direction, namely as a quantum field theory. As a formal matrix model,  the correlation functions of these models have a unique combinatorial/perturbative interpretation in the sense of Feynman diagrams. In particular, the additional structure (in comparison to ordinary quantum field theories) gives the possibility to compute exact expressions, which are resummations of infinitely many Feynman diagrams. For the easiest topologies, these exact expressions (given by implicitly defined functions) will be presented and discussed. If time remains, higher topologies are discussed by a connection to Topological Recursion.

Tue, 02 Nov 2021

15:30 - 16:30
L6

Unitary Invariant Ensembles and Symmetric Function Theory

Bhargavi Jonnadula
(University of Oxford)
Abstract

In this talk, we use tools from representation theory and symmetric function theory to compute correlations of eigenvalues of unitary invariant ensembles. This approach provides a route to write exact formulae for the correlations, which further allows us to extract large matrix asymptotics and study universal properties.

Mon, 25 Oct 2021

12:45 - 13:45
Virtual

Random Matrix Theory for the Black Hole Interior

Mark Mezei
(Simons Center for Geometry and Physics)
Further Information

NOTE UNUSUAL DAY AND TIME: Monday/12:45pm

Abstract

In recent years a fruitful interplay has been unfolding between quantum chaos and black holes. In the first part of the talk, I provide a sampler of these developments. Next, we study the fate of the black hole interior at late times in simple models of quantum gravity that have dual descriptions in terms of Random Matrix Theory. We find that the volume of the interior grows linearly at early times and then, due to non-perturbative effects, saturates at a time and towards a value that are exponentially large in the entropy of the black hole. This provides a confirmation of the complexity equals volume proposal of Susskind, since in chaotic systems complexity is also expected to exhibit the same behavior.