Forthcoming events in this series


Thu, 29 May 2014
11:00
C5

"Specialisations of algebraically closed fields".

Ugur Efem
Abstract

Algebraically closed fields, and in general varieties are among the first examples
of Zariski Geometries.
I will consider specialisations of algebraically closed fields and varieties.
In the case of an algebraically closed field K, I will show that a specialisation
is essentially a residue map, res from K to a residue field k.  
In both cases I will show universality of the specialisation is controlled by the
transcendence degree of K over k.  

Thu, 22 May 2014
11:00
C5

"On the decidability of generalized power series fields"

Benjamin Rigler
Abstract

Given a field K and an ordered abelian group G, we can form the field K((G)) of generalised formal power series with coefficients in K and indices in G. When is this field decidable? In certain cases, decidability reduces to that of K and G. We survey some results in the area, particularly in the case char K > 0, where much is still unknown.

Thu, 22 May 2014
11:00
C5

"On the decidability of generalized power series fields"

Benjamin Rigler
Abstract

Given a field K and an ordered abelian group G, we can form the field K((G)) of generalised formal power series with coefficients in K and indices in G. When is this field decidable? In certain cases, decidability reduces to that of K and G. We survey some results in the area, particularly in the case char K > 0, where much is still unknown.

Thu, 08 May 2014
11:00
C5

Demushkin Fields and Valuations

Kristian Strommen
Abstract

I will give an outline of ongoing work with Jochen Koenigsmann on recovering valuations from Galois-theoretic data. In particular, I will sketch a proof of how to recover, from an isomorphism G_K(2) \simeq G_k(2) of maximal pro-2 quotients of absolute Galois groups, where k is the field of 2-adic numbers, a valuation with nice properties. The latter group is a natural example of a so-called Demushkin group.
Everyone welcome! 
Thu, 06 Mar 2014
11:00
C5

'Defining p-henselian valuations'

Franziska Yahnke
(Muenster)
Abstract

(Joint work with Jochen Koenigsmann) Admitting a p-henselian
valuation is a weaker assumption on a field than admitting a henselian
valuation. Unlike henselianity, p-henselianity is an elementary property
in the language of rings. We are interested in the question when a field
admits a non-trivial 0-definable p-henselian valuation (in the language
of rings). They often then give rise to 0-definable henselian
valuations. In this talk, we will give a classification of elementary
classes of fields in which the canonical p-henselian valuation is
uniformly 0-definable. This leads to the new phenomenon of p-adically
(pre-)Euclidean fields.

Thu, 27 Feb 2014
11:00
C5

'Counterexamples to a conjecture of Wilkie'

Jonathan Kirby
(UEA)
Abstract

In an o-minimal expansion of the real field, while few holomorphic functions are globally definable, many may be locally definable. Wilkie conjectured that a few basic operations suffice to obtain all of them from the basic functions in the language, and proved the conjecture at generic points. However, it is false in general. Using Ax's theorem, I will explain one counterexample. However, this is not the end of the story.
This is joint work with Jones and Servi.

Thu, 05 Dec 2013
11:00
C5

"Poincare series counting numbers of definable equivalence classes"

Jamshid Derakhshan
(Oxford)
Abstract

Hrushovski-Martin-Rideau have proved rationality of Poincare series counting 
numbers of equivalence classes of a definable equivalence relation on the p-adic field (in connection to a problem on counting representations of groups). For this they have proved 
uniform p-adic elimination of imaginaries. Their work implies that these Poincare series are 
motivic. I will talk about their work.

Thu, 28 Nov 2013
11:00
C5

'Model Theory of Adeles and Adelic Geometry'.

Dr Derakhshan
(Oxford)
Abstract

This is joint work with Angus Macintyre. I will discuss new developments in 
our work on the model theory of adeles concerning model theoretic 
properties of adeles and related issues on adelic geometry and number theory.

Thu, 06 Jun 2013
11:00
SR2

Positivity Problems for Linear Recurrence Sequences

Ben Worrell
(Oxford)
Abstract

 We consider two decision problems for linear recurrence sequences (LRS) 
over the integers, namely the Positivity Problem (are all terms of a given 
LRS positive?) and the Ultimate Positivity Problem (are all but finitely 
many terms of a given LRS positive?). We show decidability of both 
problems for LRS of order 5 or less, and for simple LRS (i.e. whose 
characteristic polynomial has no repeated roots) of order 9 or less. Our 
results rely on on tools from Diophantine approximation, including Baker's 
Theorem on linear forms in logarithms of algebraic numbers. By way of 
hardness, we show that extending the decidability of either problem to LRS 
of order 6 would entail major breakthroughs on Diophantine approximation 
of transcendental numbers.

This is joint with work with Joel Ouaknine and Matt Daws.

Thu, 23 May 2013
11:00
SR2

'Model completeness and henselianity'

Franziska Jahnke
(U.of Muenster)
Abstract

 A classical question in the model theory of fields is to find out which fields are model complete in the language of rings. It turns out that all well-known examples of model complete fields are quite rigid when it comes to henselianity. We discuss some first results which indicate that in residue characteristic zero, definable henselian valuations prevent model completeness.

Thu, 21 Feb 2013
11:00
SR1

"Small rigid subsets of the reals"

Will Brian
(Oxford)
Abstract

A topological space is called rigid if its only autohomeomorphism is the identity map. Using the Axiom of Choice it is easy to construct rigid subsets of the real line R, but sets constructed in this way always have size continuum. I will explore the question of whether it is possible to have rigid subsets of R that are small, meaning that their cardinality is smaller than that of the continuum. On the one hand, we will see that forcing can be used to produce models of ZFC in which such small rigid sets abound. On the other hand, I will introduce a combinatorial axiom that can be used to show the consistency with ZFC of the statement "CH fails but every rigid subset of R has size continuum". Only a working knowledge of basic set theory (roughly what one might remember from C1.2b) and topology will be assumed.